ピリジニウム塩を含む近赤外吸収色素を用いた色素増感太陽電池

Dye-Sensitized Solar Cells Based on Near-Infrared Dyes with Pyridinum Rings

広島大学大学院工学研究科物質化学システム専攻 助教 大山 陽介 e-mail: yooyama@hiroshima-u.ac.jp Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Yousuke Ooyama

研究の大要

有機色素とTiO2電極から構成される色素増感太陽電池(DSSCs)は、太陽エネルギーを電 気エネルギーに変換するクリーン(二酸化炭素を発生しない)な次世代太陽光発電システム として注目されている。本研究では、新規なピリジニウム塩系近赤外吸収色素を開発し、 その置換基を様々に変換することでTiO2電極上での色素の配列・配向や分子間相互作用を 制御し、可視から近赤外領域の太陽光を有効に捕捉して、DSSCsの高効率化を図ることを 目的とする。本研究を遂行することにより、ピリジニウム塩系近赤外吸収色素の分子配 列・配向や分子間相互作用を制御して、DSSCsの高効率化を達成することのみならず、近 赤外吸収色素の熱的作用(太陽熱光線を吸収する特性)と光学的作用(光電変換特性)を利用 して、「地球環境・地球温暖化防止」を指向した新しいエネルギー材料の創出に結びつく と期待できる。

Abstract

Dye-sensitized solar cells (DSSCs) based on dye sensitizers adsorbed on nanocrystalline TiO₂ electrode have received considerable attention because of high incident solar light-to-electricity conversion efficiency and low cost of production. To improve the performances of DSSCs further, it would be very useful to develop effective new near-infrared (NIR) sensitizers for use in DSSCs, because red/NIR radiation (600-1000 nm) accounts for about 25 % of the solar energy arriving on the Earth's surface [visible radiation (350-700 nm) accounts for about 45 % of solar energy]. In the present study, as new-type NIR dye sensitizers, a novel pyridinum dye with pyridinium ring as an electron-accepting group has been designed and synthesized, and their photovoltaic performances of dye-sensitized solar cells are investigated. NIR dye sensitizers providing good absorption in the red/NIR region of the solar spectrum are regarded as one of the most promising classes of organic sensitizers for the prevention of global warming.

1. 研究目的

有機色素と酸化チタン(TiO₂)電極を用いる色 素増感太陽電池(DSSCs)は、二酸化炭素を発生 しないクリーンな太陽光発電システムであり、 環境調和型の持続的社会を構築できるものと して大きな期待が寄せられている。DSSCsの光 電変換効率の向上を図るためには、太陽光を有 効に捕捉できる有機色素の開発が緊急の課題 である。最近、可視領域(400-700nm)と近赤外 領域(700-2000nm)に光吸収特性有する近赤外 吸収色素を用いた DSSCs の開発が試みられて いる。しかしながら、最も有望とされているフ タロシアニン系やスクアリウム系近赤外吸収 色素を用いた場合でも、DSSCs の光電変換効率 は約 3~4%程度と低く、太陽光を有効に利用で きていないのが現状である。

本研究では、新規なピリジニウム系近赤外吸 収色素を開発し、その置換基を様々に変換する ことで TiO₂ 電極上での色素の配列・配向や分子 間相互作用を制御し、可視から近赤外領域の太 陽光を有効に捕捉して、DSSCs の高効率化を図 ることを目的とする。

2. 研究経過

新規な近赤外吸収色素として、ピリジニウム 系近赤外吸収色素 OH12 を分子設計・合成した。 さらに、比較としてピリジン系蛍光性色素 OH11 とビピリジン系蛍光性色素 OH13 を合成 した。色素 OH11、OH12 および OH13 の光物 性および電気化学的特性を評価するために、可 視吸収・蛍光スペクトル測定およびサイクリッ クボルタンメトリー(CV)測定を行った。これら 色素を用いた DSSCs を作製し、IPCE(Incident Photon to Current conversion Efficiency)測定や電 流 - 電圧(*I-V*)測定から光電変換特性を評価し た。

3. 研究成果

キノン系色素(1)を酢酸中、酢酸アンモニウム 存在下で4-ピリジンカルボキシルアルデヒドと 反応させることにより、構造異性体の関係にあ る二つの色素(2)と(3)を合成した。色素(2)と 4-ブロモ酪酸との反応により色素(4)へと導き、そ の後、加水分解することでピリジン系蛍光性色 素 OH11 を合成した。蛍光性色素 OH11 と 1-ヨ ードブタンと反応させることでピリジニウム 系色素 OH12 を得た。キノン系色素(1)を酢酸中、 酢酸アンモニウム存在下で 2,2'-ビピリジン -4,4'-ジカルボキシアルデヒドと反応させるこ とにより、オキサゾール環の形成とアルデヒド 基の酸化が進行し、ビピリジン系蛍光性色素 OH13 を得た(Scheme 1)。

Scheme 1. Synthesis of OH11, OH12, and OH13.

色素 OH11-OH13 の光物性を調べることを目 的として、THF 中での可視吸収および蛍光スペ クトル測定を行った。可視吸収スペクトルにお いて(Figure 1)、色素 OH11-OH13 は、350-370 nm 付近に $\pi \rightarrow \pi^*$ に由来する吸収帯を示した。さら に、OH11 と OH13 では 410-425 nm 付近に、 OH12 では 560 nm 付近に、ジブチルアミノ基か らピリジンあるいはピリジニウム環への分子 内電荷移動特性(ICT)に由来する吸収帯が出現 し、ピリジニウム系色素 OH12 の ICT 吸収帯は、 ピリジン系色素 OH12 の ICT 吸収帯は、 ピリジン系色素 OH12 の ICT 吸収帯は、 ピリジン系色素 OH11 とビピリジン系色素 OH13 の ICT 吸収帯よりも約150 nm も長波長シ フトした。対応する蛍光スペクトルにおいて、 OH11 と OH13 の蛍光極大波長はそれぞれ 533 nm と 559 nm に出現し、蛍光量子収率(Φ)はそれ ぞれ 0.86 と 0.34 であった。一方、OH13 は蛍光 性を示さなかった(Table 1)。色素 OH11-OH13 を TiO₂ 薄膜に吸着させた状態での光吸収スペ クトルを Figure 2 に示す。TiO₂ 薄膜に吸着した OH11-OH13 の吸収極大は、それぞれ 450 nm、 588 および 445 nm に出現し、THF 中での吸収ス ペクトルと比べてそれぞれ 38 nm、22 nm およ び 20 nm ほど長波長シフトした。ピリジニウム 系色素 OH12 の吸収末端は 780 nm までおよぶ ことが分かった。

Figure 1. Absorption (–) and fluorescence (…) spectra of **OH11**, **OH12**, and **OH13** in THF.

Figure 2. Absorption spectra of **OH11**, **OH12**, and **OH13** adsorbed on TiO_2 film.

色素 OH11–OH13 の電気化学的特性を調べる ために、DMF 中における CV 測定を行った(vs. Ag/Ag⁺)。OH11 と OH13 においては、可逆な一

電子酸化波(Epa^{ox} = 0.40 V と 0.35 V)が観測され . たが、**OH12**は非可逆な酸化波(E_{pa}^{ox} = 0.40 V)を 示した(Table 2)。吸収および蛍光スペクトルと CV 測定から得た酸化電位を用いて、色素の HOMOとLUMOレベルを見積もったところ(vs. NHE)、OH11 はそれぞれ 0.96V と-1.62V、OH12 はそれぞれ 0.96V と-0.82V、OH13 はそれぞれ 0.91V と-1.62V であり、OH11 と OH13 に比べ て、OH12のLUMOは正側にシフトしているこ とがわかった。OH11 と OH13 の LUMO レベル は、TiO2電極の伝導帯(CB, -0.5V vs. NHE)より も十分に負側にあり、色素から TiO2 電極への電 子注入が可能であることが示唆された。一方、 **OH12**の LUMO レベルは TiO2 電極の伝導帯レ ベルに近く、**OH11** と **OH13** に比べて電子注入 効率は低下することが予想された。

Table 1. Spectroscopic properties of **OH11**, **OH12**, and **OH13** in THF

Dye	λ_{max}^{abs}/nm	$\lambda_{max}{}^{fl}/nm$	$arPsi^{[a]}$	SS ^[b] /nm
	$(\varepsilon_{\text{max}}/\text{dm}^3\text{mol}^{-1}\text{cm}^{-1})$			
OH11	349 (31000)	533	0.86	121
	412 (26600)			
OH12	368 (43000)	_	-	-
	560 (12200)			
OH13	351 (36000)	559	0.34	134
	425 (23700)			

[a] The Φ values were determined by using a calibrated integrating sphere system ($\lambda_{ex} = 325$ nm). [b] Stokes shift value.

Table 2. Electrochemical properties of **OH11**, **OH12**, and **OH13** and their energy levels of HOMO and LUMO

		0,		
Dye	$E_{\rm pa}/{\rm V}^{[{\rm a}]}$	$E_{\rm pc}/{\rm V}^{\rm [b]}$	HOMO/V ^[c]	LUMO/V ^[c]
OH11	0.40	0.35	0.96	-1.62
OH12	0.40	-	0.96	-0.51
OH13	0.35	0.25	0.91	-1.62

[a], [b] E_{pa} and E_{pc} are the anodic and cathodic peak potentials *vs*. Ag/Ag⁺ in acetonitrile. [c] *vs*. a normal hydrogen electrode (NHE).

色素 OH11、OH12 および OH13 を用いた DSSCs を作製し、入射単色光(λ)当たりの光電変 換効率(Incident Photon to Current conversion Efficiency: IPCE)を行った(Figure 3)。OH11 の IPCE_{max} は 38% (@500 nm)、OH12 では 6%

(@600nm)、OH13 では 4% (@470nm)であり、ピ リジニウム系色素 OH12 の IPCEmax は、ピリジ ン系色素 OH11 とビピリジン系色素 OH13 の IPCE_{max} よりも長波長側にある。AM 1.5、照射 光強度 100 mW cm⁻² での電流-電圧(I-V)測定か ら(Figure 4)、OH11、OH12 および OH13 の短絡 電流密度(J_{SC})はそれぞれ 4.33 mA cm⁻²、1.74 mA cm^{-2} 、0.62 mA cm⁻²であり、光電変換効率(η)は それぞれ 1.33%、0.51%、0.15%であった。一方、 **OH11、OH12** および **OH13** の開放電圧(V_{oc})はそ れぞれ、522 mV、444 mV、392 mV であった(Table 3)。 ピリジニウム系色素 OH12 の低い光電変換 効率の理由として、OH12 の LUMO レベルが TiO2 電極の伝導帯レベルに近く、色素からTiO2 電極への電子注入効率が低いためと考えられ る。

Figure 3. IPCE spectra of DSSCs based on OH11, OH12, and OH13.

Figure 4. Photocurrent-voltage curves of DSSCs based on OH11, OH12, and OH13.

Table 3. Photovoltaic performances of DSSCs based on OH11, OH12, and OH13

Dye	$J_{\rm sc}$ /mA cm ⁻²	$V_{\rm oc}/{ m mV}$	ff	η /%
OH11	4.33	525	0.58	1.33
OH12	1.74	444	0.66	0.51
OH13	0.62	392	0.62	0.15

4. 今後の課題と発展

得られた実験結果を総合的に評価し、分子設計にフィードバックして近赤外吸収色素の機能強化(置換基の最適化による太陽熱光線の吸収特性の改善と分子配列・配向性の精密な制御)を図り、DSSCsの光電変換率6%を目標とする。さらに、近赤外吸収色素の良好な熱的作用(太陽熱光線を吸収する特性)と光電気化学的作用(光電変換特性)を利用した新しい「地球環境・地球温暖化防止」材料の創出を目指したい。

5. 発表論文リスト

<u>Y. Ooyama</u>, S. Inoue, R. Asada, G. Ito, K. Kushimoto, K. Komaguchi, I. Imae and Y. Harima; Dye-Sensitized Solar Cells Based on a Novel Fluorescent Dye with Pyridine Ring and a Pyridinium Dye with the Pyridinium Ring Forming Strong Interaction with Nanocrystalline TiO₂ Films; *Eur. J. Org. Chem.*, **2010**, *1*, 92-100.