接触共振圧電応答顕微鏡による強誘電体リサクサ単結晶の ナノドメイン観察

Nano Domain Structures of Relaxor Ferroelectric Single Crystals Investigated by Contact Resonance Piezoresponse Force Microscopy

研究代表者: 防衛大学校通信工学科 講師 沖野 裕丈 Department of Communications Engineering, National Defense Academy Lecturer, Hirotake OKINO

スマートストラクチャとは、自動車、建造物といった構造体自身がインテリジェンスを持つ、すなわち 外界の環境や、構造体自身がその状態の変化を検出し自立的に変化に対して適切に応答する、という概念 である。本研究は、このスマートストラクチャに不可欠な構成部品である各種センサ用の材料の中でもと りわけ重要な強誘電体を対象とする。なぜなら、強誘電体は様々な物理量(力、電気、温度、光)を相互 変換する能力をもち、多種多様なセンサに用いられているからである。本研究では、リラクサ型強誘電体 と呼ばれるたいへん優れた特性を持つ材料について、その優れた特性の発現メカニズムの解明を目的とし た実験を行う。特に、リラクサ型強誘電体の高い電気・機械エネルギー変換効率に着目し、申請者が提案 しているナノメートル領域での材料観察法(接触共振圧電応答顕微鏡)による観察実験結果から考察をお こなう。また、その観察法のさらなる改良も行う。

The concept of a smart structure is about providing engineered "things" (automobiles, buildings and so on) with intelligence. Intelligence implies an adaptive response that is conditioned to acknowledge a number of input stimuli; that is to say self-diagnosis and even self-restoration. For this smart structure, various sensing devices are essential. I have investigated ferroelectric materials, because they can transduce mechanical, electrical and thermal energy from one to the other and are key materials for sensing devices. Among many kinds of ferroelectric materials, "relaxor" type ferroelectrics have excellent properties. In this study, I focus on clarifying the mechanism of giant electromechanical coupling factor of the "relaxor" ferroelectric materials, which is important for ultrasonic sensing applications. For this purpose, I will study on nanoscale properties of the "relaxor" ferroelectrics using contact-resonance piezoelectric force microscope that I have proposed. This technique can image nanoscale ferroelectricity with high sensitivity. I will also improve this technique to be widely used for material science.

1. 研究目的

強誘電体リラクサは、大きな誘電率を有し、高 い電気機械結合係数と巨大な圧電効果を示す工学 的に優れた材料である。強誘電体リラクサとは, リラクサ挙動, すなわち相転移挙動の散漫化(誘 電率温度依存性におけるピークのブロード化)と 異常な誘電分散(誘電率の周波数依存性が顕著) を特徴とする特殊な強誘電体である。1958年に発 見されて以来、このリラクサ挙動を解明しようと 多くの研究者が実験的,理論的検討を進めてきた。 今日では、このリラクサ挙動の起源は、ナノサイ ズの分極領域 (Polar Nanosized Region: PNR) にあ ると考えられているが、その具体的な挙動や圧電 的性質との関係について、まだ解明すべき点が残 されている。特に、電気的特性と PNR も含めた分 極構造(ドメイン構造)の相関に関する研究は, 微小なドメイン構造を観察する手段が乏しいこと もあり十分ではない。

そこで本研究では、代表的な強誘電体リラクサ

材料である(1-x)Pb(Mg_{1/3}Nb_{2/3})O₃-xPbTiO₃単結晶 (PMN-xPT)の誘電率とドメイン構造の相関関係 を明らかにすることを目的とした。強誘電体リラ クサの誘電率について考察することは、その電気 機械結合係数の高さを理解する上でも重要である。 なぜなら、強誘電体の電気機械結合係数は、基本 的には材料が機械的、電気的に"柔らかい"ほど、 つまり弾性コンプライアンスと誘電率が大きいほ ど高くなるからである。

具体的には、PMN-xPTのPT組成比xを変化させながら、それらを熱処理したときの降温速度と誘電率、ドメイン構造の関係について調査した。 最近、PMN-33%PTにおいて、熱処理後の降温速度が強誘電相における誘電率に大きく影響することが報告され(F. Yan *et al*.: Appl. Phys. Lett., 81 (2002) 4580.)、その現象にドメイン構造のサイズ が影響していることが予見されていたが、直接的に確認されていなかった。

また、本研究ではドメイン観察法である接触共

振 圧 電 応 答 顕 微 鏡 (Contact-Resonance Piezoresponse Force Microscope: CR-PFM)の改良を 目的とした実験も行った。CR-PFM は原子間力顕 微鏡をベースとした手法で,従来型の圧電応答顕 微鏡より高感度なドメイン観察が可能である。し かし,得られる像にドメイン構造以外の情報が混 入してしまう恐れがあり,その可能性を検討した。

2. 研究経過

2.1. PMN-xPT 試料の作製

試料として、ブリッジマン法により作製され た PT 固溶量の異なる三種類の PMN-xPT 単結晶 を用意した。それぞれ、1 kHz で測定した誘電 率が最大となる温度 T_m が、128°C、146°C、153°C であり、これらを以下では PMN-27%PT、 PMN-32%PT、PMN-34%PT と表記する。PMN-PT 固溶系の組成相境界 (Morphotoropic Phase Boundary: MPB)は 32%付近と言われており、 MPB 近傍で各種材料定数が大きくなることが 知られている。各単結晶試料を(100)面で切り出 し、厚み 0.4 mm の板状試料とした。なお、こ れらの単結晶試料は JFE ミネラル(株)ならびに (株)東芝よりご提供いただいた。

試料表面には誘電率測定用に直径1 mmの円形 電極と観察領域の目印として 50 μm の格子状パ ターンを形成した。これらは、スパッタ法にて成 膜した Pt/Ta 薄膜をフォトリソグラフィによりパ ターンニングすることにより得た。また、試料裏 面には CR-PFM 観察時の対向電極として同じく Pt/Ta 薄膜を全面に形成した。

2.2. 誘電率の降温速度依存性

各試料に対して、以下の手順を繰り返すことに より誘電率とドメイン構造の降温速度依存性を調 べた:(1)室温から熱処理温度 T_a (通常 240°C) まで 60°C/h にて昇温,(2)温度 T_a にて 1時間保持, (3) T_a から室温まで異なる降温速度(6°C /h, 30°C /h, 60°C /h, 急冷(約 1000°C /h))にて冷却,(4)室温, 空気中にて CR-PFM によりドメイン構造観察,(5) 室温から 240°C まで 60°C/h にて昇温しながら誘電 率測定。

Fig. 1に各試料の誘電率(測定周波数10 kHz, 印加電圧1 V)の降温速度依存性を示す。明ら かに,PT固溶量xにより,誘電率の降温速度依 存性は異なる挙動を示した。MPBよりPT固溶 量が少ないPMN-27%PT(Fig. 1(a))では,誘電 率は降温速度にはほとんど依存しなかった。一 方,PMN-34%PT(Fig. 1(c))では,Yanらによ る報告の通り,強誘電相での誘電率が降温速度 の上昇とともに減少した。PMN-32%PT(Fig. 1(b))も降温速度依存性を示したが,PMN-34%PT

Fig. 1. Dielectric constant of (001) plate PMN-xPT single crystals ((a) x=0.27, (b) x=0.32 and (c) x=0.34) measured after 240°C thermal treatment at different cooling rates. The dielectric constants were measured during heating cycles at the same heating rate of 60° C/h.

Fig. 2 Cooling-rate dependence of dielectric constant of PMN-*x*PT single crystals measured at 40°C during heating process.

と比較するとその依存性は小さかった。また, 誘電率が最大となる温度 T_m については,降温速 度依存性は確認できなかった。Fig. 2 に,各試 料の 40°C における誘電率の降温速度依存性を まとめた。降温速度 6°C/h で熱処理した試料の

Fig. 3 Dielectric constant of PMN-32%PT single crystal measured after thermal treatments with various annealing temperature T_a : (a) 220°C, (b) 140°C, (c) 135°C and (d) 130°C.

誘電率を1とすると, 急冷した試料の誘電率は PMN-27%PT で 0.97, PMN-32%PT で 0.68, PMN-34%PT で 0.48 であった。

以上で明らかとなった誘電率の降温速度依存性 において、どの温度を通過する際の降温速度が決 定的なのかを明らかにするために、PMN-32%PT について熱処理温度 T_a を変化させながら同様の実 験を行った(Fig. 3)。その結果、 T_a が 135°C以上 の場合においてはみられた降温速度依存性は、 T_a が 130°C以下になるとなくなることが確認された。 つまり、130°C 前後の温度が降温速度依存性を決 定している重要な温度であることが明らかとなっ た。この温度以下では、リラクサ特有の誘電率の 周波数分散がなくなることも確認している。した がって、PNR が存在すると言われているリラクサ 相から PNR が消失する強誘電相への転移温度(い わゆる凍結温度 T_f)を横切る際の降温速度が,降 温速度依存性を決定していることがわかった。

2.3. ドメイン構造の降温速度依存性

各試料について、熱処理前および異なる降温速 度で冷却した240°Cの熱処理後にドメイン構造を 観察した。PMN-34%PT についての結果を Fig. 4 に示す。PMN-34%PT は誘電率に顕著な降温速度 依存性が確認された試料であるが、ドメイン構造 についても降温速度依存性が確認できた。Fig. 4 から明らかなように、降温速度の上昇とともにド メイン構造が細分化してゆき、急冷された試料で はナノサイズのドメインが確認された。このナノ サイズのドメインは、リラクサ相に存在する PNR が, リラクサ相から強誘電相への相転移温度近傍 を通過する際にミクロンサイズの通常のドメイン 構造に変化するための十分な時間を与えられず, 凍結されたような状態になったものだと考えられ る。一方,誘電率に降温速度依存性がみられなかっ た PMN-27%PT については、ドメイン構造もほと んど降温速度に依存しなかった(Fig. 5)。以上の 結果は, Fig. 1 および Fig. 2 で示した誘電率の降温 速度依存性が、降温速度の違いによるドメイン構 造の変化と関連があることを示唆している。しか し、PT 固溶量により誘電率およびドメイン構造の 降温速度依存性が異なることに対する理由ははっ きりとしておらず、このような傾向を説明するモ デルも存在しない。ただ, PMN-27%PT は立方晶 から菱面体晶への相転移であるのに対し, PMN-32%PT および PMN-34%PT は立方晶から正 方晶を経て単斜晶へ転移する(B. Noheda et al.: Phys. Rev. B, 66 (2002) 054104.) という相転移挙動 の違いがあることは指摘されるべきであろう。

また、凍結されたナノサイズのドメインが誘電 率を低下させていることを示唆している以上の実 験結果は, 強誘電体リラクサの巨大な誘電率の起 源が PNR の熱的ゆらぎにあるとする最近の一般 的理解と一見矛盾しているように思われる。しか し、高温ではゆらいでいた PNR も凍結された状態 では熱的にゆらいでいるとは考えにくい。また, あくまで予見であるが、ナノサイズに細切れに なったドメインが強誘電相になることでランダム な方向に自発歪みを持つと,通常の強誘電体では 強弾性ドメインの形成により緩和されるべき歪み が内部応力として蓄積し、誘電率を低下させてい る可能性があると考えている。(多くのペロブスカ イト構造の酸化物強誘電体セラミックスでは、粒 径が小さくなり内部応力が高くなると誘電率が小 さくなることが報告されている。)

Fig. 4 A topographic (a) and CR-PFM (b)-(d) images of PMN-34%PT single crystal: as-polishded (b) and after 240°C thermal treatments at cooling rate of 30° C/h (c) or $\approx 1000^{\circ}$ C/h (quenching) (d).

Fig. 5 A topographic (a) and CR-PFM (b)-(d) images of PMN-27%PT single crystal: as-polishded (b) and after 240°C thermal treatments at cooling rate of 30° C/h (c) or $\approx 1000^{\circ}$ C/h (quenching) (d).

2.4. CR-PFM における共振状態の安定性

CR-PFMによるドメイン観察において,探針押し 付け力の変動や試料の弾性定数が観察結果にどの 程度影響するかも検討した。例として Fig. 6 に接 触共振モードの共振周波数の探針押し付け力依存 性を示した。接触共振モードはカンチレバが試料と 接した状態でおこる共振モードなので,その共振状 態はカンチレバの機械的条件のみならず,探針-試 料間に働く力や探針直下の試料の機械的特性にも 依存してしまい,結果としてドメイン構造以外の情 報が観察結果に影響することが懸念される。このよ うな原因による共振周波数シフトの影響を受けな い高感度な圧電応答検出法が望まれる。

Fig. 6 Dependence of the contact-resonance frequency on imaging force when in contact with the +c domain surface of a PbTiO₃ single crystal.

3. 研究成果

PMN-xPT単結晶について, 誘電率とドメイン構造の降温速度依存性に明確な相関を見出すとともに, PT 固溶量 x によりこれらの降温速度依存性が異なる挙動を示すことを初めて実験的に示すことに成功した。これらの結果は, 高誘電率が求められる PMN-PT単結晶の圧電応用に直結する知見であるだけでなく, 強誘電体リラクサの物性を理解する上で重要なデータを提供すると考えている。

4. 今後の課題と発展

圧電応用の観点からは、分極処理をした PMN-PT単結晶のドメイン観察も重要である。分 極処理条件による誘電率や圧電特性の変化とドメ イン構造の関係を知ることで、高い誘電率や圧電 特性を引き出すドメイン構造が判明すれば、すで に知られている材料の特性をそのまま向上させる ことができる可能性があり、材料探索の研究開発 に大きなインパクトを与えることは間違いない。

また、本研究で用いたドメイン観察法である CR-PFM については、前述の弱点を克服すべくFM 検出の原理を取り入れた観察法の検討を進めてお り、うまくいけば高感度ドメイン観察法としての 圧電応答顕微鏡の適用範囲をさらに広げることが できると考えている。

5. 発表論文リスト

"Cooling-Rate-Dependent Domain Structures of Pb(Mg_{1/3}Nb_{2/3})O₃-PbTiO₃ Single Crystals Observed by Contact Resonance Piezoresponse Force Microscopy", H. Okino, J. Sakamoto and T. Yamamoto, Jpn. J. Appl. Phys., **43**, 6808-6811 (2004).

"Cooling-Rate-Dependence of Dielectric Constant and Domain Structure in (1-x)Pb(Mg_{1/3}Nb_{2/3})O₃-xPbTiO₃ Single Crystals", H. Okino, J. Sakamoto and T. Yamamoto, Jpn. J. Appl. Phys. (投稿中)