高選択的な小分子取り込み能を有する新規多孔性結晶の合成

Synthesis of new microporous crystals with highly-selective adsorption

研究代表者 京都大学大学院工学研究科 助手 近藤 満
Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Mitsuru Kondo

Two new crystalline coordination polymers having new microchannel aspects were synthesized from 4,4'-dipyridyl disulfide (dpds) or di(4-pyridyl)glycol (dpyg). These compounds have microchannels with new chemical interaction sites. The one-dimensional compound [Cd(dpds)(H2O)4]·2NO3 (1) affords the redox active microchannels, whose size is 5 x 4 Å. This microchannel shows could interact with redox active guest molecules. On the other hand, [Cu(4,4'-dpyg)](dpyg) (2) creates microchannels with hydrogen bonding sites, whose size is 5 x 2 Å. This microchannel shows the flexible pillared-layer structure, and exhibits the selective adsorption for the water molecules.

1. 研究目的
ゼオライトや活性炭などの多孔性固体はその小孔細孔構造に基づいた不均一系触媒反応や立体選択的小分子吸着、あるいはイオン交換活性を示すことが知られている。これらの機能性がその小孔細孔構造に大きく依存しているため、新しい細孔構造を有する多孔性固体はこれまでの化合物では実現し得なかった機能を実現しうると期待される。实际、これまでに新しい細孔構造を持つ数多くのゼオライトが合成され、それらの機能が明らかにされてきた。これらの多孔性固体のミクロ細孔とゲスト分子との選択的相互作用は、フアナルワールス力の働き、またその選択性は立体的な効果が大きく作用することが知られている。

著者等は、これまでに 4,4'-bipyridine を金属イオンで連結することにより構築された多孔性配位高分子骨格のミクロ細孔が常温高圧下でも崩壊を起こすことなく、メタンを初めてとする気体を吸着しうることを見出していた。ゼオライトの様な無機固体に対して、配位高分子骨格は有機架橋配位子を金属イオンで連結した多孔性配位高分子は、有機骨格を修飾することにより、容易に新しいミクロ細孔を持つ多孔性固体を設計、合成することが可能である。本研究では、ゲスト分子に対して、化学的に高い親和性を持つミクロ細孔を構築し、

ゲスト小分子に対して高い選択性を持つ多孔性結晶を合成することを目的として研究を進めました。

2. 研究経過
2.1. 方法
ゲスト分子に対して、化学的に相互作用しうるサイトを持つ架橋配位子として、4,4'-dipyridyl disulfide (dpds)、及び di(4-pyridyl)glycol (dpyg) (Scheme 1) をミクロ細孔骨格に組み込んだ多孔性骨格の構築を検討した。dpds は酸化還元活性な S-S 部位とゲスト分子との間で酸化還元反応を起こすことが期待され、また、dpyg 配位子は OH 基を通じてゲスト分子と水素結合を形成することが可能となる。

Scheme 1
2.2 結果，及び考察

dpds 配位子と硝酸カドミウムを注め深く反応させることにより，dpds がカドミウムイオンで連続された配位高分子
\[\text{Cd}(\text{dpds})_2(\text{H}_2\text{O})_2 \cdot 2\text{NO}_3 \cdot 1 \] を得た。単結晶
構造解析の結果，カドミウムイオンには dpds
配位子のビリジン窒素 4 つと水分子 2 つが配位したオクタヘドラル構造をとっていることが分かった（Figure 1a）。dpds 配位子はカドミウムイオンが連結され，一次元型のネットワーク構造が形成していることが示された
(Figure 1b)。この一次元骨格はその内部に大きなキャビテイを有しており，さらにこれ
らの一次元鍵はキャビテイを塞ぐことなく規則正しく積層していることが分かった。その
結果，a 軸方向に沿って，約 5 x 4 A のミクロ細孔が生成している（Figure 1c）。このミクロ
細孔の内部にはエタノールがゲスト分子とし
て取り込まれているが，真空条件で容易に取
り除けることが明らかとなった。カウンターア
ニオンである硝酸イオンは一次元鍵に結合せず，
またミクロチャンネル内部にも取り込まれておらず，これらの鍵間に位置している。ミク
ロ細孔壁面は dpds 配位子 2 つとカドミウム
イオン 2 つから形成されており，つまりゲスト
分子が dpds 配位子の S-S サイトと相互作用
し得る構造をとっている。そこで，この配位高
分子 1 の酸化還元挙動を固体のサイクリック
ポルタモグラム (CV) を用いて明らかにした。
その結果，この配位高分子は S-S サイトの S-
…S への還元が -1.2 V で起こることが見出され
た（Figure 2）。この酸化還元挙動は dpds 配
位子の S-S サイトに由来するものであること
が，同条件下での dpds 配位子の CV の測定結
果から明らかとなっている。この結果は，この
配位高分子が還元性のゲスト分子と相互作用
し得るミクロ細孔が構築できたことを示して
いる。

dpyg と銅(II) イオン，及び 2,3-pyrazine-
dicarboxylate (pzdc) をエタノール/水系で反応
させ，多孔性配位高分子 [Cu(pzdc)(dpyg)]
(2) を得た。単結晶構造解析の結果，この化
合物は，銅(II) と pzdc から成る二次元シートを
dpyg が連結したピラメドレイヤー型の配位高
分子であることが明らかとなった。銅中心は
pzdc 配位子の酸素，窒素原子，及び dpyg 配位
子の窒素原子が配位した5配位構造を取りている。また、銅中心はpzdcの酸素配位子により架橋された2核構造を有し、Cu-Cu間距離は約3.4Åとなっている。この二核の銅中心がpzdcで連結されることにより二次元シートが生成しており、さらにこの二次元シートをdpygで連結することにより、ピラードレイヤー構造が形成している。つまり、配位結合によって三次元的に連結された構造が形成していることが明らかとなった。その結果、この配位高分子2はレイヤー間にピラードで支えられたミクロ細孔を有していることが明らかとなった。Figure 2.に示す様に、このミクロ細孔の大きさは5×2Åで、細孔内壁には水素結合サイトとなるOH基が存在し、ゲスト分子として取り込まれた水分子と水素結合していることが明らかとなった。つまり、ゲスト分子と化学的に相互作用し得る新規多孔性固体が得られた。このミクロ細孔はメタノールやエタノールなどのアルコール類、あるいはアセトニトリルなどよりも水を効率よく吸着し得ることが見出された。つまり、本研究が目的としている
選択的なゲスト分子吸着活性を有する多孔性固体が得られたことが明らかとなった。この選択性の発現には、i) 水素結合、ii) 立体的制約、の2つの寄与が考えられ、今後、これらの効果の大きさの検討を進める必要がある。

この配位高分子2のレイヤーとレイヤーの距離は約13.3Åであるが、粉末X線パターンの解析から真空下で水分子を取り除くと12.1Åに縮まることが示された。このミクロ細孔は選択的に水分子を取り込むことが可能で、しかも常温、常圧下で水分子をミクロ細孔内に取り込み、レイヤーとレイヤーの距離は再び13.3Åに回復することが明らかとなった。つまり、このピラードレイヤー構造は極めてフレキシブルな構造を有し、かつていることが図示された（Scheme 2）。

まとめ
今回、dpds及びdpygを架橋配位子に用いることにより、ゲスト分子が化学的に相互作用しやすいミクロ細孔を有する多孔性配位高分子の合成と構造決定に成功した。dpds配位子からは酸化還元性、またdpyg配位子からは水素結合による選択性を利用したミクロ細孔が構築されたことが示された。

3. 研究成果
有機架橋配位子を金属イオンで連結することにより、k化学的に相互作用しうるミクロ細孔を合理的に設計、構築し得ることを見出した。

実際に得られたミクロ細孔はゼオライトなどの従来の無機固体とは異なり、酸化還元特性、選択的な水素結合生成能を有することが見出された。

4. 今後の課題と発展
今回の研究成果により、新しいミクロ細孔の構築には有機架橋配位子の設計が極めて重要であることが示された。つまり、有機架橋配位子を合理的に設計することにより、これまでには無かった新しいゲスト分子選択性を示す多孔性配位高分子が得られると考えられる。今後は、これらの多孔性固体の実用化への検討に加え、より新しい相互作用サイトを有するミクロ細孔の開発が期待できると期待される。

5. 発表論文リスト
2. Synthesis and Crystal Structure of [Cu₂(pzdc)₂(dpyg)]n (pzdc = Pyrazine-2,3-dicarboxylate; dpyg = 1,2-Dipyridylglycol). Rational Synthesis of a Channel Structure with New Chemical Environments. Kondo, M., Fujimoto, K., Noro, S., Okubo, T., Kitagawa, S. （投稿準備中）