Integration of object and spatial information in visual cognition

Jun SAIKI

Visual information processing goes through two relatively independent pathways: object information pathway (ventral pathway) and spatial information pathway (dorsal pathway). This study examined the interaction of these two pathways, and found out that (1) substantial amount of spatial processing is executed in the object pathway, and (2) spatial attentional selection is modulated by object information in the image. Spatial representations used in the object pathway may be different from that used in the spatial pathway, in particular, in terms of its orientation sensitivity. On the other hand, visual form representations functioning as an object to the visual attention are constrained by uniform connectedness and simple topological structure of the form.

1. 研究目的

物体の認知のような人間にとって面として容易で半ば自己化された活動は、実は脳の非常に複雑な情報処理過程に支えられている。近年、人間の脳は外界の物体情報と空間情報を2つの異なる処理経路でかなり独立に処理していることが示された。しかし、人間が最終的に物体とその位置を統合し、何かどこにあるか認知できること、また、物体の同定自体に部分間の関係という空間情報が必要なことから、物体情報と空間情報の統合が人間の視覚認知に不可欠であることは明らかである。本研究は、研究の進化している物体情報と空間情報の統合の問題を物体認識における部分情報の空間関係による統合、及び視覚的注意における物体の役割という側面から明らかにすることを目的とした。具体的には、第1の点に関しては、複数の部分の形態情報を統合して複雑な物体の形態情報を構成するときに用いられる部分間関係情報の性質を実験的に調べた。第2の点に関しては、複数属性の定位と同定をするときに背景となる物体の性質がどのような効果を持つかを、空間手がかり課題と属性の比較判断課題を用いて調べた。

2.3 研究経過と成果

以下では、2つの実験プロジェクトに分けて、研究経過と成果をまとめて述べる。

(I)物体認知における部分の空間関係による統合

Saki & Hummel (1998)は部分情報をその空間関係によって統合して物体全体の認知をする際に、
画面を挟んで第2図形を表示した。

(2)視覚的注意における物体の役割。
近年、視覚的注意は空間上の位置あるいは領域に向けられるというよりも、物体に対して向けられるという考え方が開花を浴びている。この物体ベースの注意効果は物体情報処理と注意という視空間上のメカニズムの相互作用を示すものであり、視覚認知における物体情報と空間情報の相互作用の典型例であると考えられる。本研究では注意メカニズムにとってどのような物体が“物体”として作用するのかを2種類の実験を通して検討した。

実験2-1：空間手がかり課題を用いた検討

第1実験では、Posnerの空間手がかり課題の変形版を用いて、注意が凹構造を持つ複雑な図形を1つの物体として扱っているかどうかを検討した。

Egly, Drayer, & Rafaal (1994)は手がかりと標的の位置が異なる場合、手がかり標的間距離は同一でも標的が手がかりと同じ物体中にある場合のほうが、反応時間が短くなることを示した。しかし、この物体ベースの注意効果は単純な凸構造を持つ長方形を物体として用いており、複雑な凹構造を持つ物体の場合は今まで検討されていなかった。物体認知の理論においては、凸構造を持つ図形は物体の構成要素として種的な機能を持つことが仮定されており、その意味で、注意メカニズムの選択対象が図形に限定されていることは十分考えられる。一方、こうした図形は単純な日常的な物を構成することは限らず、多くの日常的物体は、こうした図形の組合せからなる。従って、注意メカニズムが日常的物体をその選択対象とするならば複雑な凹図形を物体として機能することが考えられる。

方法

図2に形態マッチング課題における反応時間が平均を示した。組合図形と分離図形を比較すると、向きの差異が0度の場合は、反応時間に有意な差がみられないのに対して、差異が45度、90度の場合には、組合図形の方が反応時間が短くなった。この結果は、物体空間関係が物体全体の向きの変化に対してより顕著な形で表現されていることを示唆するものである。

図3にフレーム図形を示した。これはフレーム図形の空間関係を確認する実験で、フレーム図形の各向きに沿って反応時間を測定した。
空間手がかり課題を用いた。図3に課題で用いられたフレーム図形を示した。各試行は始めにフレーム図形を1秒間示し、その後フレーム図形の4隅のうちの1ヶ所に手がかりが107ms表示される。200msの間隔の後、標的と妨害刺激がフレームの4隅に表示された。4隅のうち3ヶ所は回転したF字型の妨害刺激で、1ヶ所は回転したT又はLの標的が表示される。課題は、標的を見つけ、それがTかLかを判断することが目的であった。フレーム図形として、Egli et al. (1994)で用いられた並列長方形と2つの中長方形を第3の長方形で組合せたボックスフレームを用いた。もし、図形であるボックスフレームが1つの物体として機能するならば、注意力がボックスフレームに沿って伝播する現象が観察されるはずである。

結果

図4に示す反応時間の分布を示す。この中で最も重要な結果は、ボックスフレーム条件において、標的が手がかりに対して対角線上に表示された場合には、フレームの端点に示された場合よりも反応時間が短くなることがある。長方形条件では、この関係が逆転していることを考慮すると、この結果は、注意力が手がかり位置であるボックスフレームの端点から、フレームに沿って伝播したことを示すものといえる。

実験2-2：属性比較判断課題を用いた検討

第2実験では、属性比較判断課題を用いて、複雑な凹凸形における物体ベースの注意効果をさらに詳細に検討した。空間手がかり課題を用いた実験ではフレーム図形が1秒間先行表示されるため、物体情報処理のどの段階で物体ベースの注意効果が生じているのかが不明であった。物体ベースの注意効果の時間的メカニズムを検討するために、物体情報と判断属性の表示間のSOAを操作した。

また、本実験では物体ベースの注意効果が生じるための物体の幾何学的特性をより詳細に検討した。具体的には、表面属性の均質結合性と物体の位置相関の効果を調べた。表面属性の均質結合性が初期の物体表現を構築する上で重要な役割を果たしていることが近年指摘されており、この変換に従えば、均質で結合した表面属性によって構成される領域が注意メカニズムにおいて最初に物体として機能するようになる。一方、この変換では、均質結合領域は形態情報をもたらさないと仮定されているが、この仮定の妥当性を領域の位置相関の効果を検討することで調べる。形態情報をもたらす均質結合性の効果は領域の位置相関によらず一定であるはずである。

方法

属性比較判断課題を用いた。図5に表示図形の例を示した。課題は図形の2ヵ所に付けられた短い線分の数が2本と1本の組合せになっているか否かをできる限り速く正確に判断することであった。図形としては、分割を持たない凹図形（J字型）、分割を持つ凹図形（H字型）、分割図形、及びJ,H図形でテクスチャの均質性を持つものの5種類が用いられた。物体ベースの注意効果の発現の時間的過程を調べるために、図形の表示と線分の表示に時間差(SOA)を付けた。SOAは0ms(同時表示)と200msであった。
結果

図6に0 ms SOA条件における平均の反応時間のデータを示した。この中で最も重要な結果は、均質結合性の効果が単純な位相構造を持つJ字型と複雑な位相構造を持つH字型で異なることである。J字型条件では、均質結合条件（UC条件）の方が非均質結合条件（nonUC条件）よりも判断時間が短かったが、H字型条件ではこの様な均質結合性の効果はみられなかった。この様な均質結合性と領域の位相構造の相互作用が図形と属性の同時性でも見られること、また、判断時間は、単純位相構造の均質結合条件のみで短くなることから、前注意的なメカニズムで構成される物体の均質結合領域はその領域が単純な位相構造を持つときにのみ、視空間的選択課題において促進効果を持つと考えられる。即ち、視空間的注意メカニズムによって物体として機能するものを領域の表面属性の均質結合性、及びその位相構造によって制約を受けている。

実験心理学研究としてここで報告した3つの研究はそれぞれの研究を対象とし、第1に、物体空間関係はより方向変化に優れているという知見は今後、他の図形を用いて現象の一般性を検討する必要がある。また、複雑な図形における視覚的注意の迂回効果（実験2-1）について、類似の現象との関連を検討しなければならない。さらに、注意における物体の均質結合性と位相構造の効果（実験2-2）に関しては、初期、中期視覚における物体表象形成の時間的過程についてはさらに実験的に検討する必要がある。

しかしながら、心理実験に基づく研究のみでは、こうした物体情報処理と空間情報処理の相互作用が視覚のどの領域で起こっているのかについては明らかできない。今後、心理実験だけではなく、fMRIやMEGのような脳の機能イメージング技術などを用いて、検討する必要がある。同時に、心理実験やイメージング研究の知見を基にして、視覚認知における物体情報処理と空間情報処理の統合メカニズムの計算モデルを構築する必要がある。人間の高次の視覚認知は様々な脳領域の緊密な相互作用によって成立するものであり、その過程を十分に理解するためには、心理実験による視覚レベルでの理解、神経科学研究による対応する脳領域の特定、計算論的アプローチによる脳情報処理モデルの構築の緊密な連携が不可欠である。本研究が、この様々な学間的アプローチに向けての心理実験という側面における基盤作りの一翼を担うことを切に願うものである。

5. 発表論文リスト


