血管平滑筋の力学的適応反応に関する研究

Mechanical adaptation of vascular smooth muscle cells

研究代表者 東北大学工学研究科機械電子工学専攻 助教授 松本 健郎
Takeo MATSUMOTO, Ph.D., Associate Professor, Biomechanics Laboratory, Graduate School of Mechanical Engineering, Tohoku University

Mechanical adaptation of vascular smooth muscle (SM) cells was studied in thoracic aortas of rats in which Goldblatt hypertension was induced for 2–16 weeks. First, SM contractility was evaluated by comparing pressure-diameter relations obtained under SM contraction and relaxation. Contractile length at each pressure and stress generated by the contraction at each diameter were calculated. Peak value of the contractile length and the pressure at the peak value were not significantly affected by the hypertension, while that of contractile stress and the diameter at the peak stress responded to hypertension. Second, effect of hypertension on in vivo strain distribution was evaluated under SM contraction and relaxation. Hypertension as well as SM contraction increased residual strain. Uniform strain distribution could be attained under a certain degree of SM contraction in any case examined. These results suggest that smooth muscle adaptively responds to change in mechanical environment.

1. 研究目的

生体には自己の内部環境を一定に保つ働き（ホメオスタシス）があるが、ひずみや応力（圧力）等に適応する力（非線形）等の力学因子に対してもこれが成立する場合があることが注目されている。

例えば、空張圧により血管壁は肥厚するが、これは内圧上昇により壁張力が増大し、応力を一定に保つとする反応と考えられる。実際、収縮期圧の平均応力は個々の細胞の血圧に依らず、血管同じであることが報告されている。

一方、平均値だけでなく、応力-ひずみの分布も変化している可能性が指摘されている。一般に血管のような厚肉円筒を加圧して膨らませると、その形状から内管壁の応力-ひずみが外管側よりも早く増加するため、膨張に伴って内管壁に応力-ひずみの集中が生じることができるが考えられている。

内圧が0の状態の管内に内圧で圧縮・外圧で引張りの応力-ひずみが複数層で存在していると、膨張に伴う応力-ひずみが共に変化することになる。

実際、拡張した血管を輪切りにしてその輪の一部を切断すると、輪の断面が変化することから、このような収縮応力-ひずみの存在が確認されており、応力-ひずみが果たして生理的な状態で管内において一定の値に保たれているのか、また、それが高血圧などの外的環境の変化に応じてどのように変化するのか興味が持たれ始めていた。

そこで、このような適応反応は血管壁内の平滑筋細胞が周期の力学環境を察知し、組織を再構築することで生じる、また平滑筋は自ら収縮・弛緩することで血管径とともに残留ひずみの量を変化させることも報告されており、短期的には壁内の応力-ひずみ分布が制御されている可能性が指摘されている。従って平滑筋の力学環境に対する適応を詳細に解明することで、基礎生理学的な知見が深まるなら同時に、環境に応じて自らの性質を変化させる新たな機能性構造材料のアイディアが得られると期待される。このような観点から本研究では、ラットに人工的に高血圧を発症させ、その後の大動脈の力学的性質や管内ひずみ分布が平滑筋の収縮と弛緩によりどのように変化するのかを詳細に探究することを目的とした。

力学特性は摘出した試料を加圧して内圧と外径の関係を調べることから求めた。ひずみ分布の算出に際しては、残留ひずみを考慮するために、応力-ひずみ関系を基にしたひずみを考慮する必要がある。解析には平滑筋収縮-弛緩による血管全体の力学特性や管内ひずみ分布にどのような影響を与えるのか、そして、それが高血圧という円周方向の負荷の増加によってどのように変化するのかを調べた。

2. 研究経過

2-1) 試料実験動物にはウィスタラット（生後10週齢、♂）を用いた。左腎動脈に鉄製クリップを取りつけて狭帯を作製し、腎性高血圧を発症させた。用いたクリップの幅は0.2–0.3mm程度である。収縮期血圧を周4回、尾静脈よりプレドニソロナララ法により測定した。血圧160mMgを超えたものを高血圧群として解析に使用した。

手術後、2–16週間経過した後、尾静脈注射にて動脈圧を円筒状のまま長さ25mm程度摘出し、試料とした。また、高血圧群と無血圧群を含めた未処理の動物を対照群とした。

2-2) 内圧-外圧試験 摘出した円筒状試料の平滑筋収縮および弛緩時の力学特性を知るために、内圧と外径の関係を調べた（図1）。摘出した円筒状試料の両端から面積角試験用に長さ1mm程度の短円筒状試料を切り出した後、試料を生体内長
に伸ばし、95%CO₂、5%CO₂ガスで酸素加熱器した37℃
のKrebs-Henseleit solution (KH溶液)を満たした試
料槽内に附けた。加温加圧は、KH溶液にかかる空
気圧を増減させることにより約1mmHg/secの速度
で行った。血管内圧は圧力変換デューラーを計
測し、血管の外径はCCDカメラを血管像を撮影し
これを画像処理装置に入力して2値化することに
よって求めた。両データをX-Yレコーダに入力し
内圧－外径曲線を得た。
実験では、まず0〜200mmHgの加温加圧を内圧－
外径曲線の形状が安定するまで繰返し、内圧を
50mmHgに保ちつつ、10⁻⁵Mのノルアドレナリ
ン(NE)により平滑筋を収縮させ、外径が一定にな
まるまで約40分間放置した。その後、0mmHgまで
一旦減圧し、再び200mmHgまで加压した。この
加圧時の曲線を平滑筋収縮時の内圧－外径関係と
した。最後に内圧を50mmHgに保ちつつ平
滑筋強度測定のニトリトシドトトリウム(SNP)を
5X10⁻⁶Mの濃度で投与し、外径が一定になるまで
約40分間放置した。その後、0〜200mmHgの加压
と減圧を内圧－外径曲線の形状が安定するまで繰
返し、安定した曲線を内圧時の内圧－外径関係と
した。2-3) 平滑筋収縮特性の評価　得られた内圧－外
径曲線から平滑筋の収縮特性を評価した(図
2)。即ち、平滑筋の収縮・弛緩両状態における
内圧－外径曲線を比較することにより、同じ内圧
における収縮量ΔDおよび、同じ内圧における
外径の上昇量ΔPを求められる。ΔDはその血
管内圧における平滑筋の収縮量と考えられ、ΔP
はその血管径における平滑筋が発生した張力の指
標と考えられる。このような考え方に基づき、平
滑筋収縮により生ずる活性収縮率%ΔDと活性
応力Δσをそれぞれ次式により求めた。

\[
%\Delta D(P_1) = 100 \times \frac{D_{\Delta \text{SNP}}(P_1) - D_{\Delta \text{NE}}(P_1)}{D_{\Delta \text{SNP}}(P_1)}
\]

\[
\Delta \sigma(\lambda_0) = \frac{P_{\Delta \text{NE}}(\lambda_0) - P_{\Delta \text{SNP}}(\lambda_0)}{D_{\Delta \text{SNP}}(\lambda_0) - D_{\Delta \text{NE}}(\lambda_0)}
\]

ただし、D_{\Delta \text{NE}}、D_{\Delta \text{SNP}}は各々血管の内圧と外径を示し、
P_{\Delta \text{NE}}は内圧を示す。また、SNPをそれぞれ収
縮剤であるNE、弛緩剤であるSNPを投与した場合
であることを示している。式(2)は収縮力の変
化を示す。ここでd_{\Delta \text{NE}}は無
負荷状態における血管外径である。また、式にお
いてD_{\Delta \text{SNP}}, P_{\Delta \text{NE}}は内圧がP_{\Delta \text{SNP}}の時
の外径を示し、P_{\Delta \text{SNP}}, P_{\Delta \text{NE}}は
内圧の変化を示す。

2-4）開き角の測定　円筒状試料の両端から得た
短円筒状試料の輪を切り開いた後、これを37℃の
酸素加熱して入った血管に移し、試料に余計な
外力が作用しないよう外側中央部を内径0.3mmの
ガラスピペットで軽く吸引して液中に固定した(図
3)。試料を実体顕微鏡下に置き、顕微鏡に取付け
したCCDカメラで試料形状を撮影しつつ30分間放置
し、形状変化を止めた時点で10⁻⁵MのNEによ
り平滑筋を収縮させ、その後の形状変化をビデオ
録画し、その状態が安定した時点でKH溶液を取替え、
これにSNPを10⁻⁶Mの濃度で加え、その後の形状
変化を録画した。開き角の算出は試料形状を画像
処理装置とマウスを用いて取り込み、自家製プログラ
ラムにより行った。

2-5）血管壁内ひずみ分布の算出　血管壁が等方・
均質・非圧縮性であり、リング切片の前後で試料
の平均周長および壁厚が不変で、かつ試料形状が切断前は円、切断後は円弧であるという仮定の下に虚線ひずみを伸び比として算出した。即ち、図4に示すように座標系をとると負荷状態の半径方向圧縮Rにおける円周方向の伸び比λθ(R)は次のようになる。

\[\lambda_\theta(R) = \frac{\pi R}{\theta r} \] \hspace{1cm} (3)

ただしθは円弧の中心角の半分（即ち円周角）であり、r*はRに相当する無応力状態の座標で

\[r^* = \sqrt{r_o^2 - \frac{\pi \lambda_\theta}{\theta}(R^2 - R^2)} \] \hspace{1cm} (4)

と表現される。なお、λ_θは無負荷状態に対する生理状態の軸方向伸長比であり、r_o*は円弧の外半径で

\[r_o^* = \frac{1}{2} \left(\frac{\pi}{\theta} (r_o + r_i) + (r_o - r_i) \right) \] \hspace{1cm} (5)

である。

3. 研究成果
3-1）平滑筋収縮能の推移 図2から模式的に推察されるように血管内圧－活性収縮率関係、血管収縮－活性気体関係はそれぞれ血管内圧および血管収縮に関して共に単調性の曲線となる。そこでこのピークの値および、その時の条件が高血圧とともにどのように推移するか調べた。

活性収縮率のピーク値%ΔDmaxの経時変化を図5に示す。対照群においては%ΔDmaxは加齢とともに低下していた。高血圧群においても同様な低下が見られたが、16週において高血圧群の方が対照群に比べて有意に小さかった。即ち、平滑筋の収縮長さは加齢により減少し、高血圧がこの減少を加速することを示唆する結果であった。

またピーク値を与える条件として、最大収縮を与える内圧P_{max}を調べたところ、対照群、高血圧群ともに経時変化は見られず、両群間に有意差はなかった。しかしこの内圧を夫々の動物の生理的血圧P_{sys}で規格化した値P_{max}/P_{sys}を調べたところ、両群ともに経時変化は見られなかったものの、高

血圧群の値は対照群と比べて低い傾向にあった。このことから高血圧はP_{max}に対し顕著な影響を与えないことが示唆された。

活性応力の最大値Δσ_{max}の推移を図6に示す。対照群には背時変化は見られなかった。高血圧群では、8週に向けて活性応力が増加した後、16週で大きく減少した。このことは、高血圧によって平滑筋の応力発生能力が一旦、亢進するものの、その能力の水準は維持されないことを示していると考えられる。

またピーク値を与える条件として、活性応力が最大になる時の内径D_{max}を収縮期血圧における外径D_{sys}によって規格化した値D_{sys}/D_{max}の変化を調べた。対照群に背時変化は見られなかったが、高血圧群に関しては、2週で一旦低下した後、上昇して16週において対照群の間に有意差は認められなかった。このことは、最大収縮応力発生外径は

図4 血管壁の座標系
図6 最大活性応力の推移
血圧の上昇に伴って元の相対位置に戻ってくることを示しており、D_maxが何らかのレギュレーションを受けていることを示す結果と考えられた。3-2) 開き角・ひずみ分布の推移 平滑筋収縮・弛緩状態における開き角の経時変化を図7に示す。収縮状態における開き角には対照群、高血圧群ともに経時変化は見られず、また両群間にも有意差はなかった。一方、弛緩状態における開き角は両群とともに経時的に増加しており、増加量は高血圧群においてより顕著であった。このことは弛緩状態の開き角は加齢および血圧の上昇により増加するものの、平滑筋が最大収縮した状態での値に殆ど変化が見られなかったことを示している。

内圧・外径間関係ならびに開き角の計測結果から初の動物の生理的血圧Pawにおいてひずみ分布を平滑筋が収縮した状態と弛緩した状態について計算した。分布がどのくらい一致するかを示す指標として、外壁側のひずみを内壁側のひずみで除した値kをまとめて図8に示す。いずれの場合でも平滑筋が中間的な収縮状態を取る時にひずみが一様に成り立つことが示される。しかしその状態 (k=1.0の位置) は対照群では平滑筋が弛緩した条件(SNP)に近い位置にあるのに対し、高血圧群では一旦収縮状態(NP)に近い位置に移った後、弛緩状態に近い位置に戻ってくるようであり、血管壁内のひずみ分布を制御する程度も何らかのレギュレーションを受けている可能性が考えられた。

4. 今後の課題と展望

本研究では、まず平滑筋の収縮能の高血圧による変化を平滑筋の収縮長さと発生応力という2つの点から考察した。収縮長さの最大値は加齢と共に減少し、高血圧がその変化を加速するものであったに対し、発生応力の最大値は、高血圧に伴い一旦上昇した後、減少する傾向を示していた。最大収縮力を与える内圧は高血圧により変化せず、その収縮期血圧に対する相対値は高血圧群では近いままであったのに対し、最大発生応力を与える外圧の相対値は高血圧により低下したものの16週経過後には対照群の値に復帰していた。以上の結果から、高血圧という力学環境の変化に敏感に反応するのは発生張力であり、収縮長さは環境の変化に対する応答性に乏しい可能性が示唆された。そこで今後は血管平滑筋の収縮機能を収縮長さと収縮張力との2つである側面から別に調えていく必要がある。このためには細胞収縮に伴う細胞内信使経路の観察や細胞内代謝の変化などの側面からの研究が必要になると考えられる。

本研究で着目した2番目の点、平滑筋による壁内のひずみ分布の制御に関しても力学環境の変化に応じて適切な応答が見られた。平滑筋収縮・弛緩に伴う開き角の変化には血管壁内の局所的な弾性特性的差や内壁側・外壁側の平滑筋の収縮特性の差があると報告しており、内圧・外径間関係から得られる平滑筋の収縮特性のみからは解明できない部分が多い。従って血管壁を解析により分析し壁内の平滑筋を単離して個々の平滑筋の特性を調べることが重要である。このような観点から、今後は細胞単体の収縮特性を計測する装置の開発が必要と考え、現在、開発を進めている所である。

5. 発表論文リスト
2) 高橋隆子, 松本康浩, 佐藤正明: 高血圧によるラット胸大動脈平滑筋の収縮特性の変化. 日本機械学会昭和73期全国大会講演論文集 (冊子中)