都市が産出す固形有機性廃棄物の総合管理と
水素発酵を利用した資源回収

Recovery of Resource from Organic Fraction of Municipal Solid Waste
using Hydrogen Fermentation and its Management

O Tatsuya NOIKE, Takashi MIYAHARA, Osamu MIZUNO,
Yukihiro KUMAGAI, Teruyuki UMITA, Michimasa NAKAMURA

*東北大学大学院工学研究科，**東北大学工学部，
***岩手大学工学部，****日本大学工学部
Tohoku University, Iwate University and Nihon University

Although carbohydrate was rapidly consumed during hydrogen fermentation, no decomposition of soluble protein was observed. Hydrogen-producing microflora easily decomposed soluble carbohydrate of 46,000 molecular weight. Hydrogen yields of bean curd manufacturing waste, rice bran and wheat bran were 2.54, 1.29 and 1.75 mol H2/mol hexose, respectively. Volatile fatty acids and alcohols were produced as by-products from decomposition of substrate. Acetate, butyrate, ethanol, 2-propanol and 2-pentanol were the main substances. The optimum conditions for hydrogen production rate were pH of 5.0, HRT of 12 hour, COD loading rate of 26.2kgCOD/m2/day. It was confirmed that the indigenous iron-oxidizing bacteria existed in anaerobically digested sewage sludge. The oxidation activities of ferrous iron of the indigenous iron-oxidizing bacteria and the pure species, Thiobacillus ferroxidans, were nearly equal. The inoculation of the iron-oxidizing bacteria accelerated the elution rate of Cu from copper sulfide and sewage sludge. It was concluded that the indigenous iron-oxidizing bacteria existing in sewage sludge has an important role to remove heavy metals from the sludge effectively.

1. 研究目的

近年、廃棄物処分場の不足から都市活動で発生する全ての廃棄物に対して減量化、再資源化が求められている。それの中に薬療廃棄物の約5割を占めている汚泥は人間の活動に伴って必ず発生するものであることから、その減量化法および再資源化法を確立することによる廃棄物発生量の減量化に与える効果は計り知れない。

1970年代、世界経済がエネルギー危機に直面した結果、水素ガス（以後水素と略す）は化石燃料に替わるエネルギーとして注目され、その利用研究が盛んになった[1]。当時は、水素を燃料とした場合には大気汚染物質が発生しないという点が評価された。1990年代になると新たな地球温暖化の問題が浮上してきたため、燃焼の際に二酸化炭素を発生しない水素は理論的なエネルギー源であるとして再び脚光を浴びようになった。水素は将来における化石燃料の代替エネルギーとしての選択のひとつであると言える。しかし、現状では、エネルギーの低水素を安定して供給するシステムは十分に確立されていない。水素を使用する燃料電池自動車など利用側の技術のみが急速に発展しているが、供給側の技術が遅れ気味になっていると思われる。

水素は水の電気分解によって生成されるが、微生物の代謝過程から回収することも可能である。この方法では、水素生成に大きなエネルギーを必要としないため、経済的な方法の一つとして研究が進められている。その中でも嫌気性非光合成細菌が増殖に光を必要としないため、水素の連続生成が行えるという利点を持っている。

微生物を用いた水素生成に関する研究は、純粋培養細菌およびグルコースなどの有機物を用いた研究が進められてきた。Clostridium 属の細菌を用いた場合、水素は従来のアセトーン-プラノール発酵の代謝物のひとつとして回収することになるが、水素回収を目的とするため、アセトーン-プラノール発酵とは逆に、溶媒生成路を停止させ、水素生成路を優先させる必要がある。このような観点から、PH、温度、滞留時間などの培養条件に関して研究が進められている[2]。最近では、実際水および有機性廃棄物からの水素回収も研究されるようになってきた。Roychowdhury らは、混合法を用いて、純粋培養細菌を用いて、いくつかの有機性廃棄物からの水素回収を報告している[3]。水野らは、腐食製造工程から大量に発生する「おから」の分解過程から水素を回収することが可能であると報告している[4]。以上のように有機性廃棄物からの水素回収が可能であることが明らかになってきているが混合法を用いる研究は少ない。これは一般に嫌気性消化法の最終生成物がメタンであり、水素発酵法を担

— 53 —
う細菌は嫌気性消化法を担う細菌と同様に嫌気性細菌であることから、通常の運転方法で行った場合、メタンも生成することになり水素のみを選択性的に生成することが困難となるためである。

現在、下水汚泥の30％程度が設置資材や燃料として再利用されているが、安全性や経済性の問題からその利用は停滞しているのが現状である。本研究で想定している水素発酵プロセスから排出される汚泥も下水汚泥に酷似した性状であり、有機物や窒素、リン等を含むことから、その肥料や再利用法が確立されることで廃棄物の減量化という観点からも極めて重要である。しかし、下水汚泥と同様に重金属を含有するであろうことが利用の妨げになる予想される。従って、緑農地への水素発酵汚泥投棄による土壤や地下水の重金属汚染を未然に防ぐために、水素発酵汚泥中の重金属濃度を低減させる必要がある。

下水汚泥からの重金属の除去除去方法として、酸、酸化剤またはキレート剤を添加して重金属を溶出させな
化学的方法や、鉄酸化剤あるいは硫黄酸化細菌を利用して生物的な方法[5]が提案されており、下水汚泥のCd、Ni及びZnは汚泥のpHを2程度まで低減させることにより比較的高い溶出率が得られるが、Cuの一部は硫化物態で存在し、pHを4程度まで低減させても溶出にくく、酸化剤の利用によって溶出は低減されることが明らかになってい
る[5]。

実験方法
2.1 水素発酵における有機性廃棄物の分解特性
実験に用いた水素生成汚泥は、水素発酵を起こした大豆サイロから採取しスクリューパンチ（18g/L）と栄養塩で酸素培養したものである。回分実験時の水素生成汚泥のバイオマス濃度は1630mg/Lであった。連続培養においてメタンが検出されなかった。実験に用いたおおさか米、および大豆を用いた含水分はそれぞれ77％、11％、12％であった。回分実験に用いた懸濁液は、VS量で210gの有機性廃棄物に蒸留水を加えて4Lとして十分に振搾し、還流で一定時間分分解させた廃棄物を除去して調整した。炭水化物/有機物の比率を1/10、および2/10とおき、これにより装置の設定に合わせて実験を行った。実験条件は、pHを3、5、5.5、6.0、6.5の5段階に設定し、水素発酵汚泥（HRT）で、メタン生成汚泥の発酵時間である10時間で、HRTの影響では、HRTを5、10、15、20、24hourの6段階に設定した。2.2 酸性発酵細菌の阻害方法—水素発酵に及ぼすpHおよびHRTの影響について
酸性汚泥をM乳酸工業より提供して Went活性汚泥に複合汚泥を半定量的に投与し、35±1℃、HRT2.2
日で約3ヶ月間培養を行い、その中でモニター型反応槽に移し複合汚泥をHRT1.0日で約1ヶ月間
投入したものである。pHの影響では、反応槽のpHを4.5、5、5.5、6.0、6.5の5段階に設定し、水
素発酵汚泥（HRT）を、メタン生成汚泥の発酵時間である10時間で、HRTの影響では、HRTを5、10、15、20、24hour
の6段階に設定した。2.3 下水汚泥中に生息する鉄酸化細菌による下
水汚泥からの重金属の除去
下水汚泥から分離した細菌を活性汚泥と、Thiobacillus ferrooxidansについて鉄酸化活性の比較を行った。以降、前者が細菌A、後者が細菌Bと称する。それぞれの細菌を水9K培地で植種した後、Fe（II）濃度を終了的に測定し、Fe（II）濃度が100mg/L以下になった時点で培養を止め、それぞれの細菌懸濁液500mlを0.1mol/Lで10回、50Lを細菌試験管とした。9K培地の栄養塩のみを含む液を、Fe（II）濃度として50、100、200、400、800、1600mg/Lとなるように調整し、さらに初期
pHを2.0に調整した。4月10日に分離した鉄酸化細菌の種類を20mlずつ植種した。NEMあるいは種類を追跡し、25℃の恒温室で120日間で各株を観察した。実験中正にpHは3.00±0.05に保たれた。

次に乾燥処理した試料を用いて、9K
培地の栄養塩を1/10の濃度で含む溶液に、Run1～6では金属硫化物の細菌（CuS、CdS、ZnS）をそれぞれ200mg/Lとするとさらに増加した。Run1、3、5には鉄酸化細菌による硫黄酸化の阻害剤としてNEM（N-エチルラメイド）を10％となるように添加し、Run2、4、6には下水汚泥から分離した
鉄酸化細菌の種類を20mlずつ植種した。NEMあるいは種類を追跡し、25℃の恒温室で120日間で各株を観察した。実験中正にpHは3.00±0.05に保たれた。

次に乾燥処理した試料を用いて、9K
培地の栄養塩を1/10の濃度で含む溶液に、Run1～6では金属硫化物の細菌（CuS、CdS、ZnS）をそれぞれ200mg/Lとするとさらに増加した。Run1、3、5には鉄酸化細菌による硫黄酸化の阻害剤としてNEM（N-エチルラメイド）を10％となるように添加し、Run2、4、6には下水汚泥から分離した
鉄酸化細菌の種類を20mlずつ植種した。NEMあるいは種類を追跡し、25℃の恒温室で120日間で各株を観察した。実験中正にpHは3.00±0.05に保たれた。

次に乾燥処理した試料を用いて、9K
培地の栄養塩を1/10の濃度で含む溶液に、Run1～6では金属硫化物の細菌（CuS、CdS、ZnS）をそれぞれ200mg/Lとするとさらに増加した。Run1、3、5には鉄酸化細菌による硫黄酸化の阻害剤としてNEM（N-エチルラメイド）を10％となるように添加し、Run2、4、6には下水汚泥から分離した
鉄酸化細菌の種類を20mlずつ植種した。NEMあるいは種類を追跡し、25℃の恒温室で120日間で各株を観察した。実験中正にpHは3.00±0.05に保たれた。
図1 各種廃棄物の水素生成特性および炭水化物分解特性

Run1 及び Run2 には硫酸第一夜を添加しなかった。25℃の恒温室内において120回/分で振とうを行い、硫酸または水酸化ナトリウムを用いて、pH を実験期間中3に保った。

3．研究成果

図1に各懸濁液からの累積ガスおよび堆積水素生成量、全炭水化物および溶解性炭水化物の濃度変化を示す。いずれの懸濁液においても、実験開始直後から水素の生成が観察された。生成ガス中の水素の割合は、培養終了時点において、おかや(63%)、米糠(44%)および小麦ふすま(54%)であった。生成したガスは水素と二酸化炭素であり、メタンは検出されなかった。非溶解性および溶解性炭水化物の分解は速やかに進み、いずれの懸濁液においても実験開始から10時間程度で分解が終了した。炭水化物の消費が停止すると、ほぼ同時にガスおよび水素生成も停止した。培養終了時 pH は、おかや(4.4)、米糠(4.7)、小麦ふすま(4.5)であった。

いずれの懸濁液においても、水素生成の主な有機物質は炭水化物であった。溶解性炭水化物はほとんど分解されず、水素生成の基質として利用されなかったと考えられる。水素収量は、消費された炭水化物をヘキソースに換算して算出した場合、おかや(2.54 mol H2/mmol hexose)、米糠(1.29 mol H2/mmol hexose)および小麦ふすま(1.73 mol H2/mmol hexose)であり、おかやの水素収率が高かった。溶解性炭水化物の分子量は、いずれの懸濁液においても約46,000であった。本研究で用いた水素生成汚泥は、分子量の大きな炭水化物であっても速やかに分解して水素を生成することが明らかになった。有機物質分解生成する代謝産物は、懸濁液によって異なっていた。揮発性脂肪酸では、酢酸およびn-酢酸が主な代謝産物であり、プロピオン酸およびl-酢酸はいずれの懸濁液においても低濃度であった。おかやおよび米糠ではエタノールが、小麦ふすまでは2-ペンタノールが大量に生成した。

図2に各 pH における水素収率を示す。pH 4.5-6.5において水素収率は pH5.0 で最大であった。図3は水素収率におよぼす HRT の影響を示す。水素ガス生成は、HRT8.10hour でやや低く 40%前後であるが、HRT6.12〜24hour で45.5〜46.8%であった。この水素ガス生成率から水素収率を計算した結果、HRT12hour で最大値を示した。また、CODcr 容量負荷が 26.2kgCODcr/m3・day のときに水素生成速度が最も高い値を示した。

溶液中の Fe(II)の減少量が、細菌による Fe(III)の生成量と等しいものとし、それぞれの細菌について各 Sb に対する Fe(III)の初期比生成速度 V₀ を求めた。S₀ の逆数と V₀ の逆数を Lineweaver-Burk プロットした。これより細菌 A 及び B の鉄酸化活性は Michaelis-Menten 型に従い、細菌 A については、Kₘ = 193 (mg/l) 及び Vₘₐₓ = 3.236 × 10⁻⁶ (mgFe(III)/hr/cell)、同様に細菌 B については、
図2 水素収率に及ぼすpHの影響

\[ K_m = 181 \text{ (mg/g/1)} \] 及び \[ \Delta V_{\max} = 3.39 \times 10^{-10} \text{ (mgFe(III)/hr/cell)} \] となった。両細菌の Michaelis 定数 \( K_m \) 及び最大反応速度 \( V_{\max} \) の値が近いことから、両細菌はほぼ同等の鉄酸化活性を持つことが分かった。

Run1, Run2 共に実験開始直後に約 30mg/l の Cu の溶出が見られたが、植種液を添加しない Run1 ではその後 Cu の溶出は見られなかった。しかし、植種液を添加した Run2 では徐々に Cu が溶出した。これは、添加した細菌が直接に CuS を酸化したためと考えられる。酸化細菌による金属硫化物の直接的な酸化は、次式で表される。

**Bacteria**

\[
\text{MeS} + 2O_2 \rightarrow \text{MeSO}_4
\]

Cd では Run3, Run4 共に溶出は見られず、細菌が CdS に対して酸化活性を持たないことが明らかになった。また、ZnS では植種液を添加した Run6 のみ溶出が見られた。

下水汚泥を用いた実験においては、Fe(II) を添加せず鉄酸化細菌のみを添加した Run2 が、両方を添加しない Run1 よりも Cu 溶出率が高くなった。これ、(1) 添加した細菌が下水汚泥中に鉄化物として存在する Cu を直接的に酸化したため、(2) 添加した細菌が汚泥から溶出した Fe(II) を酸化し、それに伴い生じた Fe(III) が酸化剤として働いたため、という 2 つの機構が考えられる。この 2 つの機構を明確に分離することは難しいが、酸化細菌の添加のみで Cu が効果的に溶出することが示された。一方、Fe(II) を添加した Run3～6 ではさらに溶出率が高くなったり、Run4, 5, 6 では Cu の溶出率が殆ど変わらないことから、pH が 3 の場合は Fe(II) の添加量は 1.0g/l で十分であることが示された。

4. 今後の課題と展望

本研究で用いた水素生成汚泥を使用して、炭素化物および蛋白質を含んだ廃水から水素を回収する場合、炭素化物は分解されて水素、有機酸およびアルコールが生成するが、蛋白質はほとんど利用されずに流出水中に残留することが予想される。水素生成汚泥は混合連培であるが、得られた結果を考慮すると、炭素化物だけでなく蛋白質を含んだ廃水から水素を回収する場合には、蛋白質を分解する細菌も共生させることが廃水処理という観点から必要であると考えられる。また、メタン生成細菌による生成した水素の消費を防ぐため本研究ではメタン生成細菌の存在しない微生物群を廃水として選んだが、最も大量に入手できる酸素酸生成物群は酸素酸生成剤の汚泥であることを考慮し、今後、そのような汚泥からメタン生成細菌の効果的な除去方法についての研究を行っていく予定である。

参考文献


発表論文リスト
