Agamous is a gene related to floral morphogenesis and is thought to have had an important role in the evolutionary process from spore-bearing forms to flowering plants.

Cloning of the homologues from form species Ceratopteris richardii was done. The genomic library was screened using specific oligo nucleotides to the conservative region and agamous as probes. 5 candidates were cloned and the characterization is now in progress.

(Agamous is a gene related to floral morphogenesis and is thought to have had a different role in the evolutionary process from spore-bearing forms to flowering plants. Cloning of the homologues from form species Ceratopteris richardii was done. The genomic library was screened using specific oligo nucleotides to the conservative region and agamous as probes. 5 candidates were cloned and the characterization is now in progress.)
本研究ではミズワラビにおけるAG関連遺伝子の解析と被子植物AG遺伝子族との関係を明らかにすることを目的とする。

（研究経過および結果）

シダ植物の中から世代時間が短く、新しいモデルプラントとして注目されているミズワラビを材料として選択した。全DNAを抽出し、シロイヌナズナのagamousをプローブとしてゲノミックサザンを行った。低ストリクルジン仮の条件で薄いバンドが検出できたが、バックグラウンドが高くはっきりと特定できる断片は検出できなかった。これは、シダ植物と被子植物が3億年前に分化したため、相対的遺伝子間の同義的塩基交換が蓄積しているためではないかと考えた。そこで、花形成遺伝子の中で保存性の高いMADS領域のアミノ酸配列から、degenerateな3種類からなるオリゴマーを合成し、再びゲノミックスサザンを行った。80%以上の相対性を持つ断片のみを検出できるような条件で実験を行ったところ約20本の断片が明確に検出された。次に被子葉、検葉のそれぞれから抽出したmRNAとノーマンハイブリダイゼーションを行ったが、有為な断片は検出できなかった。さらに、オリゴマーとpolyTを用いてRT-PCRを行ったが有為な結果は得られなかった。これはMADS関連遺伝子群が花子囊形成初期のみで発現しており、実験に用いた段階の胞子葉では既にこれらの遺伝子群が発現を終了していることによるのかもしれない。ミズワラビの胞子葉の断片を観察したところ、長さ1cm程度のワラビ巻きの段階で既に胞子囊形成が始まり、滅失分裂が開始していることがわかった。現在、約1000個体のミズワラビを培養し、発生初期の胞子葉を採取する準備をしている。

次に、ミズワラビの全DNAからゲノミックライブラリを数作成した。ミズワラビのクローンを染色し、数種体当たりのゲノムサイズを4×10⁸bpと推定した。ミズワラビの全DNAをSau3AIで分解し、LambdaGEM-11ベクターにクローニングした。この段階でミズワラビのDNAがうまくクローニングできていないという問題にぶつかったが、ホストのストライプを選択することにより克服できた。ゲノムDNAのメチル化等かわわっているかもしれない。4×10⁸bpのブラックをオリゴマーを用いてスクリーニングし、2個のポジティブなクローニングを得た。これらのクローニングからラムダDNAを抽出し、制限酵素で切断後、オリゴマーとハイブリダイズする断片をpBluescriptベクターへサブクローニングした。これらのクローニングから、最も強い条件下でオリゴマーおよびagamousとハイブリダイズするものを5つ選択し、現在塩基配列を決定中である。本年中にはこれらのクローニングの塩基配列決定が終わり、本年後半よりミズワラビの新芽から対応するcDNAをクローニングし、それらの発現様式をin situハイブリダイゼーションで検出する予定である。

agamousと並行して、花形成の極初期に発現されるleafy、シロイヌナズナの成長実付近で発現され、動物や菌類の形態形成をもたらす役割を果たすホメオボックスを持つknottedも同時にクローニングすることができた。現在、agamousと共に解析を進めて中である。

本助成により、ミズワラビをモデルシステムとして、シダ植物から被子植物への形態進化を分子生物学的手法で解析する基礎を確立することができた。

— 232 —