サイズの揃った金属超微粒子の表面電子状態の研究

Surface electronic structures and properties of size-selected small metal clusters

代表研究者　岡崎国際共同研究機構分子科学研究所
極端紫外光科学研究系応用物理科学研究所助教授　見附 孝一郎
Assoc. Prof., Dept. of Vacuum UV Photoscience,
Institute for Molecular Science
Koichiro Mitsuke

Metal clusters are produced by means of the supersonic expansion of a seeded atomic beam or laser vaporization technique. Their geometrical structures and electronic states have been studied by the following experimental methods: (1) Metal clusters with a particular size and a spin state are selected and focused with two hexapole magnets. Then the adiabatic ionization potentials are measured by ultraviolet photoelectron spectroscopy. Also, the distribution of the unpaired electrons and the equilibrium geometry are determined from analysis of the hyperfine structures resulting from electron spin magnetic resonance. (2) Metal clusters are ionized by collision with helium metastable atoms in the triplet state. The energy analysis of the emitted electrons (MAES) provide information on the spatial extent of the valence orbitals concentrated on the cluster surface. (3) Cluster anions are produced by using electron impact method and are size-selected by a time-of-flight mass spectrometer. We are planning to measure their laser photodetachment spectra to obtain the dependence of the electron affinity on the cluster size and knowledge of vibrational structures in the neutral electronically excited states.

研究目的

金属超微粒子（マイクロクラスター）を気相中の金属原子ビーム中に生成し、次の三つの実験手段を用いてその幾何構造や電子状態を研究する。
(1) 不均一磁場質量選別器によって金属クラスターのサイズと電子スピン状態を選択する。その二紫外光電子分光 (UPS) 法で断熱イオン化ポテンシャルを測定し、仕事関数のサイズ依存性を求める。また電子スピン共鳴 (ESR) 法でクラスターの不対電子分布や幾何構造などに関する知見を得る。
(2) 3 重項状態のヘリウム He(2s2) をクラスターと反応させてイオン化する。この準安定励起原子励起電子分光 (MAES) によってクラスターの最外殻表面近傍の波動関数の対称性と空間分布を観測する。
(3) クラスタービームを高速の電子で衝撃し負イオンを生成する。飛行時間型質量分析器によってサイズを選択したのちパルスレーザーを照射して光脱離光電子分光 (PDES) を行う。クラスターの電子親和力のサイズ依存性や中性励起状態の振動スペクトルを測定する。

研究経過

(1) 不均一磁場質量選別器によるクラスターのサイズ選択
不対電子を持つ原子が奇数個集合で構成されるクラスターは原子数（サイズ）とスピン状態が一定の関係を持つ場合に不均一磁場によって収束・選別することができる。植田らはこの性質を利用して鉄ジウムクラスターを選別し、Li₈と Li₆の電子スピン共鳴スペクトルを測定した。スペクトルは超微細構造とクラスターの回転構造が重なり合った複雑なパターンを示す。我々は植田らと協力して、通常の加熱蒸発法では生成させることができ
不可能な重金属のクラスター（例えば鈦など）をレーザー蒸発法によって生成し、6極磁場でサイズ選別をそのUPSあるいはESRスペクトルの測定を試みた。レーザー蒸発による金属クラスター源はSmallleyらによって開発されたものとほぼ同じ形をしている。すなわち、回転しながら前後に移動する金属棒にYAGレーザーの2倍波を集光してプラズマ状態を作りそれを高圧のヘリウムガスで冷却、膨張させることで高濃度の金属クラスターを生成するものである。クラスタービームを小孔（スキャマー）で切り出し、差動排気された真空槽に導き、そこでサイズ選別とUPS、ESRの測定を行う。なお、レーザー蒸発源の作動条件のチェックを行う目的で、炭素と炭素の混合クラスターを生成しその質量スペクトルを測定した。

2) ヘリウム3重項状態を用いたクラスターの準安定原子脱気電子分光

この実験には強いHe(2S)ビームが不可欠である。我々はこれまでに、電子衝撃法や熱気放電法などでHe(2S)を生成していたが、十分な強度が得られなかった。励起原子源の寿命が短いこと、1重項のHe(2S)がかなりの割合で混入してしまうことなどの問題点があり実用性に欠けていた。そこで、新たに冷陰極放電型の励起原子源を開発し検討した結果、平成2年度に3.13×10^5 s^-1sr^-1の極めて強いビーム強度を達成した。この励起原子源を用いて基本的な気相分子のMAESスペクトルを測定し、イオン化の部分を高エネルギー依存性および角度依存性を解析し波動関数の従来特性やその異方性に関して多くの情報を得た。金属クラスターのMAESの場合には、個々のMAESのクラスターのサイズを区別するために放出電子とイオンとの同時計測を行う必要がある。このための装置を開発中である。

3) クラスターの光脱離電子分光

金属クラスターあるいはフェレンドールクスラターのレーザー光脱離電子分光装置を設計・製作した。装置の設計と初期段階の組立て（イオン源と質量分析器）を東京大学教養部化学教室内で行い、検出部と測定結果の組み込みや装置の最終調整を続け続けて分子科学研究所において着手している。日産研究研究助成金によって電子エネルギー分析器を備品として購入することを計画する。

研究成果

1) 不均一磁場質量選別器によるクラスターのサイズ選別

磁気モーメント\(m_i g_i \mu_0 \) (\(m_i \): 磁場量子数、\(g_i \): Landeの\(g \)値、\(\mu_0 \): ポーラ磁子)を持つクラスターは半径\(r \)方向に角周波数\(\omega = \sqrt{2 m_i g_i \mu_0 H_0 / m r_0^2} \)で単振動を行う (\(r_0 \): 6極磁石の内接円の半径、\(H_0 \): 磁場、\(m \): クラスターの質量)。ビーム軸 (\(z \)軸) 方向の速度を\(v \)とすると\(z = 0 \), \(r = 0 \)から出出したクラスターが\(z = a - a + b \)に置かれ6極磁石で偏向させ\(a = l + b, r = 0 \)の検出器に到達する条件は

\[
\tan^{-1}(v/\omega a) + \tan^{-1}(v/b^2) = \omega a/v
\]

であり、クラスターの初期の入射方向によらない。このことは6極磁場が収束作用を持つことを意味しており、したがって選別後のビームの強度を増す上で極めて有用であることがわかる。選別されるクラスターのサイズの大きさは\(H_0 \)に比例し、\(r_0 \)と\(v^2 \)に反比例する。実際に、クラスタービームの速度を固定し磁場を掃引して低質量数側から順にクラスターを検出することが可能であった。また、\(v \)を下げるとためにクラスターを質量数の大きな希ガスにシードしてできるだけ低濃度のノズルガスから検出させる必要がある。クラスターの検出には高度の表面電離検出器（タンクステンフォライト製）と四極子型マスフィルタを組み合わせて用いた。前者を電子衝撃型に交換すればイオン化の際のクラスターの解離確率を見積もることができる。

2) ヘリウム3重項状態を用いた準安定原子脱気電子分光

我々は密結エネルギーエ\(E \)に関する部分イオン化不効果\(\sigma(E) \)の変化を測定することによって、粒子間の相互作用ポテンシャルやイオン化確率の異方性などを直接的に観測した。装置は差動排気された4段の真空槽から成る。He(2S)は冷陰極放電型励起原子源で生成し飛行時間法を用いて速
度を選別する。衝突式で試料気体と反応させるイオン化で飛び出した電子をエネルギー分析する。どのイオン化状態（バンド）においてもlog \sigma-log E プロットはほぼ直線に近いがその傾きは終状態によって大きく異なる。N\sub{2} の場合、三つの原子価軌道 3\sigma_{g}, 1\pi_{u}, 2\pi_{u} からのイオン化が可能である。II 终状態より終状態の偏光の方向が小さいことにから分子軸に垂直な方向でイオン化は大ということが予想される。すなわち、分子軸方向 \(\alpha \) の分子軌道が張り出している方向 \(\text{He}(2\text{S}) \) が接近した場合、ポテンシャルの近距離斥力部分の立ち上がり方が急なので \(E \) が増加しても He は \(N\sub{2} \) にあまり接近することができず、したがって \(\sigma(E) \) はほど頑著に増加しない。一方、垂直方向 (\(\pi \) 以外の分子軌道が張り出している方向) の衝突では粒子間距離の減少に基づくポテンシャルエネルギーの上昇は小さく、イオン化が起こる場所は \(E \) の増加とともに近距離に移行しきれてゆく \(\sigma(E) \) は急激に増加すると考えられる。

3) クラスターの光脱離光電子分光

製作中的装置の概要について述べる。クラスターイオン生成部は電子衝撃法によるイオン源と、飛行時間型質量分析器から成る。レーザー蒸発法または音速分子分光法でクラスター・ビームを生成し、電子銃から発射された電子ビームと交差させることにより、光分解性電子付着過程によって生成された反応生成物イオンは断熱吸収型で衝突を繰り返し、イオンクラスターへと成長する。衝動的エネルギーを発生させるため、原子構造分析装置は原子構造分析装置を導入し、発生したイオンを質量分析器に送る。スニグル70V 3重構成状態を使って金属微粒子の表面磁性の発現機構の研究を実現しうる可能性がある。最後に、金属クラスターのレーザー光脱離による電子親和力や軌道エネルギーなどの基本的な物理量を測定することは金属微粒子の特徴的な性質を理解するために不可欠なデータであると考えられる。以上をまとめると本研究の目標の最終的な目標はマイラーセラの近道構造・電子状態・光子の特性・応応性などを測定するための適用的手法の確立であり、これによって基礎研究ならびに応用研究の開発分野に対して大きく貢献することを期待される。

発表論文

2) Mitsuke, K., Suzuki, S., Imamura, T. and Koyano, I: Negative ion mass spectrometric

3) Mitsuke, K., Suzuki, S., Imamura, T. and Koyano, I.: Negative-ion mass spectrometric study of ion-pair formation in the vacuum ultraviolet. II. \(\text{OCS} \rightarrow \text{S}^- + \text{CO}^+ \), \(\text{O}^- + \text{CS}^+ \), and \(\text{CO}_2 \rightarrow \text{O}^- + \text{CO}^+ \), *J. Chem. Phys.*, 93, 1710–1719 (1990).

9) Takami, T., Mitsuke, K. and Ohno, K.: Penning ionization cross section of \((\text{CH}_3)_2\text{C} \) and \((\text{CH}_3)_2\text{C} \) by collision with \(\text{He}^*2\text{S} \) metastable atoms, *J. Chem. Phys.*, 95, 918–929 (1991).