Application of phytosiderophores of mugineic acid series to plant cell and tissue cultures

Mugineic acid (MA) is a phytosiderophore secreted from the roots of barley (Hordeum vulgare L. cv. Minorimugi) in a rather large amount under iron deficiency stress. Its functional role is to extract iron from the soil and to carry it, as Fe (III)-MA complex, into the root cells via a postulated high affinity transport system, and is very similar to that of microbial siderophores. This similarity in the functional role implies that as exemplified by several microbial siderophores, MA might serve as a growth promoter of some cultured cells or tissues of plants belonging to Gramineae. In this study, several callus tissues of graminous plants were examined for their growth response to MA added to R-2 medium containing ferric hydroxide-gel (Fe(III)-gel; 45 μM) as iron source.

Under conditions of suspension culture, the addition of MA caused a slight or considerable increase in the growth rate in five out of the six cell lines examined. However, the growth rate of these cell lines at the optimal MA concentrations (3 or 30 μM) did not exceed remarkably that of those supplied with Fe(III) EDTA (45 μM) as iron source.

In an experiment using solidified agar medium, we found one cell line (initiated from immature embryo of barley cultivar Rikuzenmugi; tentatively called "RM callus") which showed remarkable growth response to MA. The RM callus grew poorly on the agar medium with iron source of Fe(III) EDTA; its growth rate increased by several fold when supplied with Fe(III)-gel+MA (3 or 30 μM). Moreover, in a course of suspension culture (2 to 3 transfer) with R-2 liquid medium containing Fe(III)-gel+MA, RM callus differentiated numerous adventitious roots, and when transferred to an iron-free medium, the roots-emerged callus tissue released a large amount of compounds possessing Fe(III)-gel solubilizing activity. These compounds were identified as malic acid and citric acid.

There are grounds for believing that increased release of citric acid is an important mineral stress response of certain Al-tolerant carrot cell lines, whereby they cope with both Al toxicity and phosphorus deficiency due to the precipitation of soluble phosphate in the ambient media: The confirmatory evidence of the latter item was obtained in this study. The functional significance of the organic acids released by roots-emerged RM callus, however, remains to be clarified. The results of the present study further represent a fundamental problem of whether or not cultured cell lines and tissues of graminous plants are capable of producing phytosiderophores of mugineic acid series.
研究目的

ムギ酸（mugineic acid；MA と略記）は、イネ科植物の根が土壌からの鉄獲得のため自律的に合成、分泌するケニ酸系キャリヤー（ムギ酸類）の一つであり、オオムギ品種ミトリムギの分泌物から初めて単離され、この種の物質の典型として集中的に研究されてきた成分である。したがって、MA に関する知見は多岐にわたるが、注目される点の一つは、その生理的機能と機能が好気的な代謝を営む多様な微生物が鉄欠乏下で放出する siderophore(s)（鉄連携キャリヤー）のそれと多くの面で類似することである。すなわち、オオムギ根による MA の合成〜分泌量は鉄欠乏ストレス下で増加する。そして、分泌された MA は培地（土壌）中の不溶性鉄(III) と結合して水溶性の Fe(III) 結合体を作り、特定の能動輸送系を介してこれを根細胞に運び込む機能を果たすと考えられる。このため近年、ムギ酸類は一括して Phytosiderophore と呼ばれ、食糧生産の主役を担うイネ科作物の鉄吸収を律速する生理活性物質として、内外の研究者の関心を集めている。

ところで、今日、微生物生理の分野では数十種を超える多数の siderophore が知られているが、その発見の経緯をたどると、これらの中に当初ある特定の微生物種の growth factor として見いだされたものが少なくない。これは、この種の物質固有の生理機能（鉄吸収の加速を通じてその生産菌の初期増殖促進、あるいは該当する siderophore 合成系欠損株の増殖機能の復活をもたらす）からみて、自然の成行きであったと考えられる。同様に、ムギ酸類はイネやトウモロコシなど、ムギ酸類発酵能力のとりわけ低いイネ科植物の中性培地における鉄吸収を律的に促進し、生育量の増加を招くことから、これらイネ科植物における growth factor の一つと見ることができる。

近年、植物関連の諸分野では基礎、応用の両面にわたり、細胞、組織あるいは器官培養に関する技法の飛躍的な発展がみられてきた。しかしながら、これらの技法の適用範囲については今なお多くの制約があり、増殖不良で放置されている培養材料もかずかく見受けられる。とくに、主要作物の主体をなすイネ科植物由来の培養材料にそうした事例があふれているが、これらの中には、鉄吸収の不調に基づく lag phase の適度の延長が培養の成功を阻んでいると見られるケースも少なくないう。本研究では、以上にかかが種々のイネ科植物に由来する培養細胞を主要な対象として、その初期増殖と栄養期および再分化などに対する MA の影響を手早く検討し、植物細胞培養による新たな研究場面の開展をはかる。これを通じて、世界的に今日広く注目されているソルガムその他のイネ科作物の鉄欠乏耐性篩選の試みに寄与することも、本研究に託する夢の一つである。

研究経過

既報の手順により、鉄欠培地で培養中のオオムギ根分泌物から必要量の MA 試料を分離し、オオムギなどのイネ科植物から新たに誘導した数種のカルスを対象として液体培地による振とう培養実験を開始した。培地の鉄源としては、水酸化鉄（III）ゲルを用い、これに MA を種々の濃度で添加した。Fe(III) EDTA を鉄源とした場合を基準として、カルス細胞の増殖状況をその時間経過や接種量、培地密度との関係など、さまざまな角度から検討したが、残念ながらそれらの増殖が MA の供給下でとくにめだって促進される事例は得られなかった。

そこで次に寒天培地で培養したMA の中でオオムギ品種リゼンムギの未熟胚に由来するもの（RM カルス）がひとり特異な生育応反をみせ、水酸化鉄＋MA（3～30 μM）の供給下で Fe(III) EDTA をえた場合の数値に及ぶ旺盛な増殖を示した。この RM カルスは、また、水酸化鉄＋MA を含む培地内で栽培培養すると多様の鉄（水酸化鉄（III）ゲル）溶解物質を培地に放出した。この鉄溶解物質はしばしば、ムギ酸類ではなく、リン酸とクエン酸を主体とする有機酸類であった。

植物培養細胞による有機酸の放出現象は従来おもにニンジン細胞におけるアルミニウム耐性機構
表 1. R-2 培地の組成

<table>
<thead>
<tr>
<th>成分</th>
<th>浓度</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaH₂PO₄</td>
<td>2.0 mM</td>
</tr>
<tr>
<td>KNO₃</td>
<td>40 mM</td>
</tr>
<tr>
<td>(NH₄)₂SO₄</td>
<td>2.5 mM</td>
</tr>
<tr>
<td>MgSO₄</td>
<td>1.0 mM</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>1.0 mM</td>
</tr>
<tr>
<td>NnSO₄</td>
<td>9.1 μM</td>
</tr>
<tr>
<td>ZnSO₄</td>
<td>7.6 μM</td>
</tr>
<tr>
<td>H₂BO₃</td>
<td>4.6 μM</td>
</tr>
<tr>
<td>CuSO₄</td>
<td>0.79 μM</td>
</tr>
<tr>
<td>NaMoO₄</td>
<td>0.52 μM</td>
</tr>
<tr>
<td>Thiamine HCl</td>
<td>1.0 mg/l</td>
</tr>
<tr>
<td>Sucrose</td>
<td>20 g/l</td>
</tr>
<tr>
<td>2,4-D</td>
<td>2.0 mg/l</td>
</tr>
<tr>
<td>EDTA-Fe</td>
<td>45 μM</td>
</tr>
</tbody>
</table>

pH 6.0

図 1. 供試したムギ酸の HPLC クロマトグラム

Column: 7.5 μm Shim-pack Li-ISC-07/S1504 (150×4.0 mm i.d.), Mobile phase: 0.15 M lithium citrate in 7% aqueous ethanol solution (pH 2.65), Flow rate: 0.4 ml/min, Column temperature: 38°C.

との関連で注目されてきたが、今回、研究により、この現象が同じ Al 耐性木シング細胞株のリ
ン酸糖酸転換酵素も役立っていることが確認さ
れた。一方、前報の酵素 Rm カルスにおける有機
酸の放出は、この現象の発現状況からみて、欠乏
に対するストレス反応と考えられるが、ここでの
放出質がムギ酸類ではなく有機酸であったこと
は予想外の事実で、イネ類植物由来の培養細胞や
組織におけるムギ酸類生産の有無の問題が改
めて問い直されることになった。この問題について
は、さらに検討を続ける予定である。

材料および方法

主として下記の植物品種、部位から調製したカ
ルスを実験に供した。

エンパク（品種ゼンジン/下胚軸）
イネ（品種ササニシキ/催芽種子）
トウモロコシ
（品種ハニーパンダム/上胚軸）

コムギ（品種 PIMA/下胚軸）
オオムギ（品種リクゼンムギ/未熟胚）
オオムギ（品種ミソリムギ/未熟胚）
オオムギ（品種米/下胚軸）

基本培地としては、小島の処方による R-2 培地
（組成：表 1）を用いた。R-2 培地の本来の鉄源は
Fe(III) EDTA (45 μM) であるが、本研究ではこの
Fe(III) EDTA を鉄源とする基質培地のほかに、
鉄源として水酸化鉄(III) ゲルを用い、これに除菌
フィルターでろ過した MA 水溶液を種々の量
（最終濃度 0, 0.3, 3.0, 30 μM）添加した一連の培地
を調製し、検討に用いた。振とう培養における培
地量は原則として 50 ml/flask とし、27°C, 80
rpm で回転振とう培養した。固体培地は、上記の
各培地に agar (0.7%) を加えて調製した。なお、
MA 供給下における増殖量の測定には、原則とし
て MA 添加培地で 1～2 代前培養した材料を供試
した。

培地の調製に要した MA 試料は、鉄源を欠く
図2. 液体培地におけるムギ酸 (MA) 濃度とカルス増殖量
培地量：50 ml/flask，点線は移植したカルス量を示す。
EDTA: Fe(III) EDTA 45 μM，MA: Fe(OH)₃ 45 μM + MA 0〜30 μM，
標準誤差を示す。

水耕液を与えて育成したオウムギ（品種ノリリミ）幼植物の根分泌から既報の手順により分離した。このMA 試料は
mugineic acid と 2'-deoxyxymugineic acid を約 4:1 のモル比で含んでいるが（図1），本研究の目的からみてむしろ両者
の併用が望ましいと思われるので，両成分未分離のまま実験に供した。培地中の MA 濃度の測定は，高速液体クロマ
トグラフィー (HPLC) または水酸化鉄 (III) ゲル溶解活性測定法により行った。

結果

（1）液体培地における増殖
通常量のカルス組織（5〜25 mg-Dry Wt./flask）を R-2 液体培地に移植し，2 週間振とう培養した場合における生育量（カルス乾燥重）を図
2 に示す。これらのデータを通観すると，水酸化
鉄 + MA の系における生育量はカルスの種類
によってかなり異なるものの，概して MA 濃度
の増加に伴い増大し，3 ないし 30 μM-MA で最
大に達している。しかし，これらの各点 MA 濃度
における生育量も，Fe(III) EDTA の供給下にお
ける生育量と同等か多少これを上回る程度で，
MA の供給により細胞増殖がとくに目立って促
進されるというような事例は認められない。

図3 は，図2 に示した各カルスの最適 MA 濃度
における生育過程を，Fe(III) EDTA (45 μM) 供
給下の生育経過と同時的に追跡した結果の一部で
あるが，ここでも多くの場合両者の間に大きな違
いは認められない。例外として，オウムギ品種リ
クゼンムギのカルスの場合，水酸化鉄 + MA の供
給下における生育速度が Fe(III) EDTA 供給下の
それを見ながに上回っているが，その差もさほど
大きいとはいえない。なお，イネのカルスは水
酸化鉄 + MA の供給下で培養 10 日目以降，生育
を停止したが，理由は不明である。

我々は当初，細胞数数百万の比較的少ない場合に
おける初期増殖の促進に，MA が著効を示す可能
性が濃いと考えた。しかし，カルスの移植量を段
図3. Fe(III) EDTA および Fe(OH)_3 + MA を鉱源とする液体培地におけるカルス増殖の時間経過。培地量: 50 ml/flask。

図4. Fe(III) EDTA および Fe(OH)_3 + MA を鉱源とする液体培地におけるカルス増殖に対する接種量の影響。培地量: 50 ml/flask, 培養期間: イネ-カルス8日間, コムギ-カルス14日間。

結果を変えてみた結果（図4）。予想を裏付けるデータは得られなかった。また、移植を一定とし、培地量を3倍（150 ml/flask）に増やした場合の生育速度も、Fe(III) EDTA 供給下と水酸化鉄 + MA の供給下で大差はなかった（データ省略）。
結局、以上の実験の中では、水酸化鉄+MA の供給によりカルス細胞の増殖が強く促進される場
面を認めることはできなかった。このことは、液体培地による振とう培養の条件下では、鉄の吸収が細胞増殖の律速因子となる可能性は少ないことを示唆するものと思われる。おそらく、植物細胞の場合、他の微生物に比し増殖速度がはるかに遅い関係で、細胞の多くが外液に接している振とう培養下ではMAを介する鉄の能動輸送は必ずしも必要でなく、外液中に溶存するFe(III)EDTAの单なる受動的吸込みだけでも必要量の鉄を一応確保できるのである。（2） 固体培地における増殖

前項の実験に続いて、R-2寒天培地による静置培養実験を試みた。その結果（図5），供試した数種のカルスの中では、オオムギ品種リゲンムギに由来するもの（RMカルスと略記）が特異な生育反応を示し、水酸化鉄＋MAの供給下でFe(III)EDTAを与えた場合の10倍近くに及び旺盛な生育を示すことが判明した。

前記のように（図3参照）、このRMカルスは液体培地のもとでも水酸化鉄＋MAの供給下で比較的優れた生育を示したが、固体培地上ではこの傾向がより強く傾向が示れる見られることがある。しかし、その理由は定かでない。一つの可能性として、固体培地上に置かれたカルスの場合は培地と細胞膜の接觸面積が限られているため、Fe(III)MA鉄体の能動輸送による急速な鉄吸収が生産上有利に働くことも考え得ないのである。この考え方はしかし、RMカルスのそれと逆の関係にある他の多くのカルスの生育反応については全く説明がつかないことになる。固体培地上でのRMカルスの生育がMAの供給により特異的に促進される理由に関しては、次に述べるRMカルスの発根および有機酸放出現象との関連を含めて、改めて検討を加える必要がある。

（3）RMカルスの不定根分化と有機酸放出

以上の実験を進める中で、水酸化鉄＋MAを鉄源とするR-2液体培地で細代培養中（2週間×2～3代）のRMカルスに、多数の不定根が発生していることが観察された。このRMカルスは、本研究に用いたほかのカルスに比べてより発根を起こしやすい傾向があり、これを2,4-Dを除いた培地に移すと容易に不定根を分化する。近年の研究8.9）によると、2,4-Dは培養細胞内で種々のアミノ酸と conjugateを形成する傾向があるが、これらの結合体は生理活性を有し、しかも細胞から放出されがたいため、conjugate形成の増加は培養細胞を2,4-D-freeの培地に移した際の再分化の阻害を招くといわれている。MA添加に伴うRMカルスの発根現象が、2,4-D～アミノ酸 conjugate形成の阻害によるのか、あるいはMA独自の生理作用に基づくものなのかは不明だが、いずれにしても木質化カルス細胞の不定根分化をなんらかの形で促進する働きをもっとことは疑いないと思われる。

このことに関連して示速問題の一つは、カルス自身の生産するムギ酸類がその不定根分化になんらかの形で関与しているのではないかということがある。既述のように、一般にムギ類は鉄欠乏条件下で多数のムギ酸類を根において合成・分泌するが、これらこれらの植物のカルスや培養細胞がムギ酸類を生産するという証拠は今まで全く得られていない。その理由はいろいろ考えられるが、もしこれが脱落分化状態の培養細胞ではムギ酸類合成系の遺伝子発現がない故とすれば、
表2．発根および非発根オオムギカルス®による鉄欠培地のもとでの水酸化鉄（III）溶解物質の放出。

<table>
<thead>
<tr>
<th></th>
<th>Fe(OH)₃溶解活性（μg·Fe/flask**）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>鋼代数***/</td>
</tr>
<tr>
<td>発根カルス</td>
<td>46.0</td>
</tr>
<tr>
<td>非発根カルス</td>
<td>0</td>
</tr>
</tbody>
</table>

* オオムギ品種リクゼンムギの未熟胚より誘導
** 培地量：50 ml/flask
*** 鋼代間隔：7日間

植物培養細胞による有機酸の放出は、当研究グループの小島著者が最初に注目し、ニンジン培養細胞のアルミニウム耐性機構に関連して研究を進めてきた現象である。その結果によれば、AIストレス選抜で得られたAI耐性細胞は高濃度のAl³⁺イオンを含む培地を与えた場合、多量のクエン酸を放出してAl³⁺イオンをマスクしうる毒性を免れる。このクエン酸放出は、Al³⁺の解毒と同時に培地中の難溶性リン酸塩の可溶化、吸収に役立っていると考えられるが、確認は得られていない。以下の実験では、前章で述べた発根RMカルスにおける有機酸放出現象の生理解釈に関する情報収集の一環として、AI耐性ニンジン細胞におけるクエン酸の放出と難溶性リン酸塩利用との関連について検討した。

すなわち、ニンジン品種MSヨンソンの下胚軸に由来する培養細胞を、4 mM-AlCl₃を含むR-2培地のもとで十数培に代謝培養して得たAI耐性選抜株。およびAI無添加のR-2培地で同様に代謝培養した非選抜株を、それぞれ水溶性のNaH₂PO₄または難溶性のAIPO₄またはFePO₄をリン酸源とする3種のR-2培地（それぞれNaH₂PO₄培地、AIPO₄培地、FePO₄培地で略記）に移植し、2週間培養した後、両細胞株の生長および培地中のクエン酸濃度を測定した。その結果（表3）、FePO₄培地とAIPO₄培地における非選抜株の生育は非常に悪く、生長ベースでNaH₂PO₄培地を選択株がNaH₂PO₄培地を与えた場合の1/3であることが分かったが、同じ条件下で選抜株はNaH₂PO₄培地においても大差ない生育を示した。また表4に示すように、選抜株の培養に用いた各培地溶液の中で、FePO₄培地とAIPO₄培地については

—141—
表3. 溶性リン酸源の供給下におけるAI耐性選抜および非選抜ニンジン培養細胞の生育反応。

<table>
<thead>
<tr>
<th>細胞株</th>
<th>生育量 (g-Fresh wt./flask)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NaH_{2}PO_{4}</td>
</tr>
<tr>
<td>選抜株</td>
<td>3.73±0.10 (100)</td>
</tr>
<tr>
<td>非選抜株</td>
<td>5.23±0.04 (100)</td>
</tr>
</tbody>
</table>

() 内の数字は NaH_{2}PO_{4} をリン酸源とした場合を 100 とした生育量の指数を示す。
培地量: 50ml/flask
接種細胞量: 0.75g-fresh wt./flask
培養期間: 7日間

表4. 溶性リン酸源の供給下におけるAI耐性選抜および非選抜ニンジン培養細胞によるクエン酸の放出。

<table>
<thead>
<tr>
<th>細胞株</th>
<th>培地中のクエン酸濃度 (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NaH_{2}PO_{4}</td>
</tr>
<tr>
<td>選抜株</td>
<td>0.07</td>
</tr>
<tr>
<td>非選抜株</td>
<td>0.03</td>
</tr>
</tbody>
</table>

培地量: 50ml/flask
培養期間: 7日間

NaH_{2}PO_{4} 培地における濃度の5倍から12倍に及ぶ高濃度のクエン酸が検出された。

これらの結果は、AIストレス選抜を経てきたニンジン細胞の選抜株が、AIPO_{4}培地の下ではもとより、AI^{3+}イオンの全く存在しないFePO_{4}培地の下でも多量のクエン酸を放出し、培地中の溶性リン酸塩を可溶化。吸収することにより、リン酸欠乏による生育障害を免れていたことを示している。おそらく、この選抜株はその選抜培地における特殊な無機栄養環境（高 AI^{3+}、低溶存リン酸濃度）に対する生理的適応の一つとして、AI^{3+}イオンの解毒と別個に、クエン酸の大量放出による鉄溶性リン酸塩の効果的な利用の仕組みを発達させてきたのであろう。

一方、前項で述べたRMカルスの発根に伴う有機酸放出現象は、その発現条件（AIおよび鉄源を欠く培地の下で発現）からみて、AIストレスやリン酸欠乏ストレスに基づくものとは考えがたい。この現象の誘因とみられるのは鉄欠乏ストレスであるが、前項のように本現象が発根カルスの鉄欠乏解消に関与するか否かの検討は今後に残される。また、AI^{3+}イオン濃度の増加やリン酸欠乏、さらには鉄欠乏といった性格的に大きく異なる数のストレス要因が、ともに有機酸放出という見掛け上同じ現象をもたらす実験的根拠に、共通の生理的基盤があるかどうかの検討も今後の課題の一つであり、関連する情報の収集に一層の努力が求められる。

今後の課題と発展

MA（ムギネ酸）がイネ科植物に由来するカルスや培養細胞の生育促進に著効を示す場面がありうることを予想し、本研究ではイネ科植物から誘導した7種のカルスを対象としての一連の培養実験を試みた。その結果、液体培養下による振とう培養実験では結局前出した場面が捕らえられなかったが、寒天培地による静置培養下で、MAを与えたときその生育量が増大する1株のオオムギカルス（RMカルス）を見いだすことができた。このMAによるRMカルスの生育促進効果が、本物質の鉄（III）輸送活性に基づくものなのか否かについては、なお検討の余地が残されている。しかし、いずれにしても限られた実験材料によるこの最初の試みの中で、わずか1例とはいえMAがカルス組織の生育促進に著効を示す事例が得られたことは注目すべきことで、これを契機として、植物細胞・組織培養におけるMAの利用が今後多くの研究場面で広く試みられる状況が開かれることが期待される。
本研究では、また、MA の供給により RM カルスの発根が誘発され、さらにその発根に伴い鉄欠乏地の有機酸放出の増が起こるという意外な事実が浮かび上がった。これらの現象の機能と生理学的意義をめぐって色々な観が増えてくるが、その全般にかかわる基本的な問題点は、イネ科植物由来の培養細胞におけるムギネ酸系 phytosiderophore 生産能力の有無であろう。この問題は、この種の培養細胞のある栽培や不根実分化と鉄吸収との関係を論じる上ではもあるし、鉄吸収または遺伝子工学的手法によるイネ科作物の鉄欠乏耐性品種選抜戦略の方向性を占う上でも見過ごしかねないものと考えられる。

栽培植物の鉄欠乏は、世界的に広汎な面を占める石灰質土壌地域における農業上の主要な問題の一つであり、その対策技術の確立が食糧生産上の急務とされている。とくに、ダイズやソルガム、トウモロコシなどの鉄欠乏による減収被害は大きく、その抜本的な対策手段として今日、各地で鉄欠乏耐性品種の導入が図られているが、従来からの交配育種による品種改良効果には目をつぐ限界があることは否定できない。したがって、遺伝子工学的手法による本格的な鉄欠乏耐性品種選抜の試みに期待すべき余地は非常に大きいと言える。このような見地から、我々は現在、MA 合成系遺伝子のクローニングを当面の目標とする総合研究の一環として、オオムギ根における MA 合成機構の研究と併せて、イネ科由来の培養細胞におけるムギネ酸類合成能の有無に関する検討を続けている。

引用文献

発表論文

5) 小島邦彦：アルミニウム耐性性菌種培養細胞（その 2）ストレス選抜の方法を巡って。栽培栽培，12，96-100 (1986).
6) 大川順良治，小島邦彦，吉田昌一：アルミニウム 耐性イネカルスの選抜とその再分離。土肥誌，57，558-562 (1986).
8) Ojima, K., And K. Ohira; Aluminium-tolerance