Feeding and growth factors

Platelet-derived growth factor (PDGF), acidic and basic fibroblast growth factors (aFGF, bFGF) and related factors depress the feeding response elicited by glutathione in Hydra. Analyzing these effects, we can define apparent components of the response (R1-R5). These factors specifically and potently depress subsets of these components: PDGF depresses R2 with ED50 0.17 pM; aFGF R4 with ED50 0.01 aM; bFGF R3 and R5 with ED50 0.5 aM, R2 with ED50 0.55 pM. The modulation of R2 by PDGF is very specific, and can be successfully utilized to estimate PDGF levels in serum from several kinds of adult animals.

We raised monoclonal antibodies which specifically depress subsets of the response to uncover molecular mechanisms relevant to the multiple components. Six different monoclonals were successfully isolated: J245 depresses R2, R4 and R5; J24 R2 and R4; J5 and J5/1 R5; J1 R1; J13 R1 and R3. Immunocytochemical studies with these monoclonals reveal that the receptors mediating R2 and R4 are located on cnidocils of nematocytes and that receptors mediating R5 are on the apical surface of the nematocytes. Though we cannot identify cell types with regard to R1 and R3, numerous spots on the animal surface can be seen with J1 or J13.

The R2 and R4 depressing activities were markedly elevated after food intake in human serum and in cerebrospinal fluids from the third ventricle of chronically catheterized rats. These activities were closely related to PDGF and aFGF, respectively, on the basis of the hydra response, the effect of anti-PDGF IgG, and the chromatographic behavior on a heparin-Sepharose column. In spite of these elevated activities, however, the elevated mitogenic activities were not observed in these samples. Administration of highly purified aFGF into the intracerebroventricular space significantly reduced the size of food intake. Focal administration of aFGF greatly suppressed the electrophysiological activities of glucose-sensitive neurons in the lateral hypothalamic area, an important site in the regulation of food intake. These studies suggest that aFGF or closely related substances may participate in the regulation of food intake in mammalian animals.
といったような内容のはっきりしない言葉で述べられている。一方、動物が食物を取った後、体内でどのようなことが起こるのかについても我々の知識は十分とはいえないと考えられる。食物は消化器管で分解され吸収される。そして肝臓での必要な処理を受け、蓄積・分配されて体各部の栄養要求を満たしている。しかし消化・吸収は遅い過程である。我々が食物を取っている時、ある程度食べれば、満腹感を感じて食べるのを止めるが、このときには消化・吸収の過程は一部が進行しているにすぎない。満腹感は胃の物理的拡張のみでは得られず、様々な化学受容の過程が働いている結果と理解されている。しかしその内容は不明の点が多い。

筆者らは、神経系を備えた動物中では最下等と考えられている淡水亜肥脛動物ヒドラの摂食応答を研究している。ヒドラでは外界の中還元型グルタチオンが摂食応答を誘発する。ヒドラは生きてている動物性プランクトンのみを食する。ヒドラは摂食に対し、まず感受器を発射して捕捉する。この際、毎の傷口から還元型グルタチオンが漏出すれば、ヒドラはそれを食べられると判断し摂食する。生きている動物細胞中には還元型グルタチオンが高濃度に存在し、死とともにすりやすくなるために酸化されてしまう。ヒドラが還元型グルタチオンで摂食応答を誘発することは、生き餌しか捕食しないことをよく説明できるものと考えられている。

さて、リモトヒドラ（Hydra japonica）では、還元型グルタチオンやS-メチルグルタチオン（GSMと略す）を受容すると触手球形成応答（図1）を起こす。この応答の特徴を測定することによって摂食応答を定量的に調べることができる。この方法によって我々は高等動物由来の細胞増殖因子がヒドラの摂食応答を強く抑制することができた。また、高等動物（ヒト・ネズミ）の血清や脳脊髄液中には食後一過的に細胞増殖因子の類似の活性が著明に増加することも見いただした。細胞増殖因子は細胞の増殖に必須なケミカル因子として発見され細胞の生存、増殖及び再生の重要な役割を果たしていると考えられている。また、酸性型繊維芽細胞増殖因子（aFGF）は細胞増殖を必要とせず再生力も弱いとされる細胞成長を両方に抑えられるが、その細胞内での役割は不明である。このような因子は神経細胞の生存・維持に必要な因子（栄養因子）として働いているのではと想像されている。細胞増殖因子の生体内での動態については
図2. 血漿・血漿存在下での応答。人の血漿（黒）、血漿（空）存在下（いずれも1%）でGSM濃度を変えたときの応答。（〇）はコントロールの応答。縦軸は応答の接続時間（分）を示し、横軸はGSM濃度を示す。1回の応答には10匹使用し、各点は3回の平均、各点の棒は標準偏差を示す。

図3. 人の血漿、血漿および精製PDGFの応答抑制。0.2μM GSM刺激に対して人の血漿（〇）、血漿（●）、精製PDGF（〇）の抑制効果を示している。縦軸は応答の抑制を示す。抑制はコントロールの応答に対して試験物質存在下で減少した応答の割合を％で示す。

不明の点が多いが、細胞の増殖・維持に対する体的な役割を考え合わせると、食事一過的に類似の活性が増加することは非常に興味深い。このこととは細胞増殖因子類似物質が、様々な病態および病状行動を制御する新しい体液性因子として機能していることを示唆し、また食事と様々の病態、ストレス、老化、疾患を考える上で重要な視点を提供する可能性を示唆している。そこで本研究ではまず研究の基盤の確立に力を注ぐべく、ヒドラのゲルタチオン化学受容の細胞増殖因子の修飾について理解を深めると同時に、ネズミについてその摂食行動と細胞増殖因子との関係について詳しく調べてきた。ネズミに関する実験は九大・医・第一生化学教室大村裕教授および同教員一同の全面的な協力を得た。

研究成績

細胞増殖因子によるヒドラーのゲルタチオン応答の修飾

ヒドラーはGSMで刺激してみると0.02より100μMの濃度範囲で強い応答を示す。この際外液中に低濃度の血漿が存在すると、応答は著しく減衰される（図2）。血漿のかわりに血漿を使用すると抑制の程度は増加する。このことより抑制因子は血小板より放出される因子であることがわかる。血小板より放出される因子をヘパリンセファローズカラムで分画してみると、ヒドラーの応答を抑制する因子は血小板由来細胞増殖因子（PDGF）と同じ位置に溶出した。そこで再現に精製されたPDGF（Dr. E. W. Raines & R. Ross より供与 Univ. of Washington, Seattle, WA）の効果を調べてみると、ED₅₀（最大抑制効果の50%が観察される濃度）は0.17pMであった（図3）。一方、PDGF作用に由来しているPDGF濃度の存在下でGSMの濃度を変えて応答を調べてみると、0.1–1μMの狭い濃度範囲で応答の抑制が観察された（図4a）。

PDGF以外の血小板蛋白でも類似的活性は見出された。β-トロンボグロブリン、血小板第4因子、表面細胞増殖因子ではED₅₀は15～20nMで、PDGFより10倍ほど高濃度であった。一方、塩基性線維芽細胞増殖因子（bFGF）（Dr. Andrew Baird より供与、The Salk Institute, San Diego, CA）は0.2μM GSMに対する応答の抑制のED₅₀は0.55pMであったが、2μM GSM応答に対してはED₅₀は500aM（5.0×10⁻⁹M）であり、強力な抑制物質であった。bFGF存在下でヒドラーの応答を調べると、GSMに対する濃度応答曲線はPDGFの場合とまったく異なっていた（図4b）。0.26fM bFGF存在下ではGSM2μMを中心とする領域と5μM以上の領域を応答は強く抑制される。aFGF存在下ではGSM10μMを中心とする領域の応答のみが抑制された（図4c）。aFGFの10μM GSM応答に対する抑制の
図 4. 細胞増殖因子存在下での応答。A) PDGF (3.3 pM) 存在下での応答 (●)。B) bFGF (0, 26 pM; ●, 0.26 μM) 存在下での応答。C) aFGF (●, 1μM) 存在下での応答。

ED₉₀ は 0.01 aM に達した。これは活性を測定する際の溶液の希釈を考慮すると、aFGF 分子は数十倍程度しか存在していないことになり、ヒドラの応答を利用すれば aFGF を超高速度に検出できる。図 4 で得られた結果よりヒドラの触手球形成応答には少なくとも種類数ある種類の応答成分 (R1-R5) があると考えられる（図 5）。PDGF は R2 応答、bFGF は低濃度では R3、R5 応答、aFGF は R4 応答をそれぞれ特異的に抑制すると考えられる。これらのグタチオン刺激で観察される応答は、R1-R5 応答の総和と考えられる。逆に特定のグタチオン濃度で応答を测定すれば、ある特定の応答のみを選択的に測定できる。R1 応答を測定するためには 0.05 μM GSM 刺激、R2 応答は 0.2-0.3 μM、R3 応答は 2-3 μM、R4 応答は 10 μM、R5 応答は 50 μM GSM 刺激が最適であることがわかる。末梢感受器では、複数の受容体ニュートリが存在するため、それぞれのニュートリは限界した刺激域に対してのみ応答し、全体の反応性は抑制される。PDGF 抑制活性について詳しく調べてみた。抗 PDGF 抑制抗体（ヒッジ IgG 分画、Drs. E. W. Raines & R. Ross より供与）の効果を検討した。この抗体は精製蛋白のうちでは PDGF による抑制活性のみを拮抗した（図 1)。低濃度の PDGF 抑制活性もほぼ完全に拮抗され、ヒドラの R2 応答を抑制する血清中の主な因子は PDGF と考えられる。さらに Drs. E. W. Raines & R. Ross の協力で、いくつかの動物血清について、その PDGF 含量を PDGF 定量法として確立されている放射受容体法とヒドラの R2 応答抑制による方法とで比較してみた。後者では、異なった濃度の血清存在下で R2 応答を測定し、抑制の血清濃度依存性と
表1. 血小板蛋白及び血清の抑制に対する抗PDGF抗体の効果。

<table>
<thead>
<tr>
<th>抑制剤</th>
<th></th>
<th>-</th>
<th>+抗PDGF IgG</th>
<th>+コントロール IgG</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0.0%</td>
<td>0.3±6.3 (4)</td>
<td>ND²</td>
<td></td>
</tr>
<tr>
<td>PDGF 33pM</td>
<td>58.8±6.5⁴</td>
<td>0.0±1.5 (4)¹</td>
<td>64.9±1.7 (5)</td>
<td></td>
</tr>
<tr>
<td>bFGF 2.5pM</td>
<td>69.6±1.8 (6)</td>
<td>73.9±4.9 (5)</td>
<td>ND³</td>
<td></td>
</tr>
<tr>
<td>EGF 40nM</td>
<td>77.6±2.0</td>
<td>75.4±11.8 (3)</td>
<td>ND³</td>
<td></td>
</tr>
<tr>
<td>PF4 84nM</td>
<td>45.1±3.2 (3)</td>
<td>47.7±0.7 (3)</td>
<td>ND³</td>
<td></td>
</tr>
<tr>
<td>βTG 39nM</td>
<td>50.3±1.3 (3)</td>
<td>57.9±6.7 (3)</td>
<td>ND³</td>
<td></td>
</tr>
<tr>
<td>人血清</td>
<td>0.1%</td>
<td>52.0±3.3 (4)⁴</td>
<td>5.2±4.3 (4)⁴</td>
<td>54.6±6.4 (4)</td>
</tr>
<tr>
<td>1%</td>
<td>83.4±0.8 (4)⁴</td>
<td>32.3±5.9 (4)⁴</td>
<td>ND³</td>
<td></td>
</tr>
</tbody>
</table>

¹ 血小板は0.1μM GSM（血小板蛋白の場合）あるいは0.2μM GSM（血清の場合）で刺激させたもので、データは平均±標準偏差で示す。 （ ）内は測定回数。 ² 抗PDGF IgG は 41.9 μg/ml で使用、コントロール IgG は、ヒドロマウス IgM 血清 IgG 分画を、2μg/ml で使用、 ³ ND: 測定していない。 ⁴ Student's t-Test で有意（p<0.01）に異なる。

表2. 各種動物血清中のPDGF含量とヒドロのR2抑制からの値と放射免疫法による値との比較

<table>
<thead>
<tr>
<th>動物血清</th>
<th>PDGF 含量</th>
<th>R2抑制¹</th>
<th>放射免疫法²</th>
</tr>
</thead>
<tbody>
<tr>
<td>牛胎児</td>
<td>204 ±44 ng/ml</td>
<td>0.93 ±0.20 ng/ml</td>
<td>20.4 ±3.9</td>
</tr>
<tr>
<td>犬</td>
<td>223 ± 9.4</td>
<td>20.4 ±3.9</td>
<td></td>
</tr>
<tr>
<td>牛</td>
<td>1.2 ± 0.2</td>
<td>0.65 ±0.11</td>
<td></td>
</tr>
<tr>
<td>マウス</td>
<td>10.0 ± 3.4</td>
<td>11.9 ±2.2</td>
<td></td>
</tr>
<tr>
<td>馬</td>
<td>0.40 ± 0.1</td>
<td>0.17 ±0.05</td>
<td></td>
</tr>
</tbody>
</table>

¹ 0.2μM GSM 刺激に対する受容体が変る溶液の濃度の動物血清で行うが、その抑制の程度によりPDGF含量を求めた（図3参照）値は平均±標準偏差。 ² R2抑制法で調べたと同一の動物血清試料に関して、放射免疫法でPDGFを定量した。

精製PDGFのものと比較してPDGF含量を推定する（図3参照）。牛胎児血清を除けば、他の値はよく一致した。牛胎児血清の場合、R3応答抑制活性（bFGF様活性）が非常に強く、bFGFが高濃度でR2応答も抑制するので、この寄与が大きいために一致しないものと考えられた。以上の結果を考え合わせると、R2抑制活性はほとんどの場合PDGFに特異的に考えられる。R3抑制活性がR4抑制活性とはそれぞれbFGF、aFGFに特異的と考えられるが、PDGFの場合ほど詳しく解析できなかった。

他の細胞増殖因子に較べてもしも、精製されたものが入手できる場合には、R1-R5応答をどのように修飾するかを調べてみよう。その結果、細胞増殖因子およびその関連物質はそれぞれ特異的にヒドロのR1-R5応答を抑制することがわかった（表3）。未知の因子についても、R1-R5の抑制を通ければそれをどのようになものであるか推測ができそうであることがわかった。

R1-R5を特異的に抑制するモノクローナル抗体の開発

細胞増殖因子の効果を解析することによって見掛け上R1-R5の応答成分があることがわかった。これらはそれぞれ異なる受容体で仲介されているものと考えられる。このことをはっきり示すため、またヒドロのグラクティオン応答があがる機構で非常に敏感に細胞増殖因子を検出できるのを明らかにするためには、分子レベルでの研究が不可欠である。その第一歩として、R1-R5を特異的に抑制するモノクローナル抗体を開発した。

グラクティオンの光錆和標識誘導体であるS-シアジドフェナル）グラクティオン（GSPAP）の存在下でヒドロを紫外外光にさらすとR2-R5が著しく抑制される。このことによりGSPAPはR2-R5受容体を反応して不活性化させるものと考えられる。S-GSPAPを利用し標識される蛋白を調べてみると触手の膜分画を可溶化して得られ
表3．各細胞増殖因子及びその関連物質によるヒドラのグルタチオン応答に対する効果

因子	効果なし	(1 μg/mL)
TGFβ (トランスフォーミングファクタβ)	効果なし	(2 ng/mL)
EGF (表皮細胞増殖因子)	R2, R3, R5	ED₅₀ = 15 nM
βTG (βトロンポリプロリン)	R1, R2, R3, R5	ED₅₀ = 15 nM
PF4（血小板第IV因子）	R1, R5	ED₅₀ = 20 nM
2.5αNGF（神経成長因子）	R1, R3	ED₅₀ = 70 pM
PDGF（血小板由来細胞増殖因子）	R2	ED₅₀ = 0.17 pM
bFGF（基底性型繊維芽細胞増殖因子）	R2	ED₅₀ = 0.55 pM
aFGF（酸性型繊維芽細胞増殖因子）	R3, R5	ED₅₀ = 0.50 μM
TNF（ガラクトス結合蛋白）	R4	ED₅₀ = 0.01 aM
IL-1β（インターロイキン1β）	R2, R4	ED₅₀ = 0.01 aM
BSF-2/IL-6（B細胞分化因子）	R1, R3	ED₅₀ = 0.01 aM

1) 調べられた因子の濃度。2) 因子の入手先、βTG、PF4、加藤久雄博士（国立循環器病センター研究所）：TNF、組換えDNA法による標品、大日本製薬、井上丁博士：IL-1β、組換えDNA法による標品、大塚製薬、菊本芳和博士：BSF-2/IL-6、平野俊夫博士、岸本忠幸博士（製薬化学工学センター）：PDGF、Dr. E. W. RainesとR. Ross (Univ. Washington, Seattle, WA): aFGF、bFGF、Dr. A. Baird (The Salk Institute, San Diego, CA)。これら以外のものは市販品を使用。

表3では、ガラクトス結合蛋白（45-70 KDa）に著しい放射活性が見いだされた。体軸部分からガラクトース結合蛋白は得られるが、これらにはほとんど放射活性は見いださなかった。グルタチオン受容体は触手にたくさんのと考えられるので、この結果より、触手結合蛋白より得られるガラクトース結合蛋白が受容体の有効な候補と考えられる。なお、標識された蛋白は細胞の均一成分であることを含む混合物であった。

モノクローナル抗体の作製は通常の方法に従った。雌BALB/Cマウスを触手膜縫合のガラクトース結合蛋白で免疫した後、脾腎を摘出し、脾腎細胞とエリオマF3U1とをポリエチレンブリコール存在下で融合しハイブリドーマを得た。ハイブリドーマの選別は抗原蛋白に対するELISA法による抗原体反応、ヒドラの全結標本での免疫蛻蛻抗体法による組織化学的検索によった。有用なハイブリドーマについてはクローンングを行なった。

このようにして6種類のモノクローナル抗体J1, J13, J24, J244, J5, J5/1を得た。これらの抗体のグルタチオン応答に対する効果を調べた。ハイブリドーマ培養液上清中には様々な細胞増殖因子が含まれ、上清をそのまま加えて行動応答を測定しても、増殖因子由来の強い抑制のために、抗体の効果を調べることはできない。そこで次のようになだら。最初ヒドラと20倍希釈のハイブリドーマ培養液上清と5分間保し、応答測定綾衡液（1 mM IPES, 1 mm CaCl₂, pH 6.2）で洗浄し、その後2000倍に希釈した第二抗体（ヒツジ抗マウスIgGあるいはIgM抗体、IgG分画）の存在下で応答を測定する。細胞増殖因子によるエラウ作用は、ヒドラを洗剤とすることによって見掛け上消失した。一方、培養液上清中の抗体の効果は第二抗体の存在下で十分検出することができた。表4はこのようにして得られた結果を示している。応答はR1を除いて、各応答の寄与がそれぞれ相対的に大きくなる刺激濃度で調べた。述べた方法で応答を測定すると、R1を調べるのに適当と考えられる0.05 μM GSM刺激に対して十分大きな応答を得ることができなかった。そこで、0.1 μM GSM刺激による応答を測定し、それと0.3 μM GSM刺激による応答（R2応答）とを比較することによって、R1に対する効果がR2に対する効果を判定した。

F3U1培養液上清中には抗体は含まれないの
表4. ヒドラの行動応答に対するモノクローナル抗体の効果。

<table>
<thead>
<tr>
<th>応答[4]</th>
<th>GSM: 0.1 μM</th>
<th>0.3 μM</th>
<th>3 μM</th>
<th>10 μM</th>
<th>50 μM</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3U（コントロール）</td>
<td>10.2±0.98</td>
<td>10.9±0.96</td>
<td>11.0±0.90</td>
<td>10.5±1.09</td>
<td>9.4±1.41</td>
</tr>
<tr>
<td>16-15</td>
<td>10.7±1.02</td>
<td>10.5±0.89</td>
<td>10.4±1.14</td>
<td>10.5±0.29</td>
<td>10.5±0.50</td>
</tr>
<tr>
<td>NMS</td>
<td>10.3±0.45</td>
<td>10.9±0.73</td>
<td>10.8±0.27</td>
<td>11.2±0.54</td>
<td>10.5±0.46</td>
</tr>
<tr>
<td>J245</td>
<td>7.5±3.04</td>
<td>3.8±0.98*</td>
<td>8.3±0.87</td>
<td>3.7±0.69*</td>
<td>3.7±0.89*</td>
</tr>
<tr>
<td>J24</td>
<td>7.7±3.09</td>
<td>4.2±0.65*</td>
<td>8.3±1.18</td>
<td>3.1±0.31*</td>
<td>8.6±0.97</td>
</tr>
<tr>
<td>J5</td>
<td>9.2±0.49</td>
<td>10.0±0.78</td>
<td>10.7±0.23</td>
<td>9.6±1.24</td>
<td>4.0±1.59*</td>
</tr>
<tr>
<td>J1</td>
<td>2.9±0.69*</td>
<td>10.8±1.67</td>
<td>9.9±2.40</td>
<td>12.0±1.98</td>
<td>10.8±1.51</td>
</tr>
<tr>
<td>J13</td>
<td>3.8±2.60*</td>
<td>9.2±1.51</td>
<td>3.9±0.80*</td>
<td>9.2±1.10</td>
<td>9.6±0.61</td>
</tr>
</tbody>
</table>

1）応答は触手球形成応答の接触時間（分）を平均土標準偏差で示す。P3U、16-15、NMS は 4 回の測定。それ以外は 3 回の測定。2）16-15 はヒドラとは無関係な抗原に対する IgM 抗体を含む培養液上清。3）NMS：未免疫マウスの血清の 200 倍希釈液で IgG の各サブクラス、IgM 抗体を含む。*は Student's t テストで有意（p<0.01）に異なることを示す。

図6. 抗体 J245 による染色像。
A）ヒドラ触手全観度標本での蛻光抗体法による染色像。デズモネム刺胞細胞の刺針とそれに接する細胞頂部が蛻光を発している。白線は 20 μm。B）A 同じ視野の位相差像。C）HRP-ストレプアクビオン・ビオチン法による染色像。デズモネム刺胞細胞の指針とともに、ステノーテル刺胞細胞の刺針が染色されている。白線は 5 μm。D）C と同じ視野の位相差像。
図7. 抗体J24による染色像。触手の全観標本での蛍光抗体法による染色像(A)、同一視野の位相差像(B)。デズモネム刺胞細胞の刺針のみが蛍光を発している。白線は10μm。

図8. 抗J5による染色像。触手の全観標本での蛍光抗体法による染色像(A)、同一視野の位相差像(B)。刺胞細胞（デズモネム、ステノーテル）の細胞の頂部が蛍光を発している。

で、これと前保温した場合の応答はコントロールとみなされる。ハイブリドーマ16-15はヒドラとは無関係な抗原に対するIgM抗体を産生する。免疫していないマウスの血清中には、ヒドラとは無関係なIgM IgG抗体を含んでいる。これらの抗体液ではR1-R5に有意な抑制は見いだされなかった。一方、ヒドラの抗原に対して得られたハイブリドーマ培養液上清ではR1-R5が有意に抑制された。ハイブリドーマJ1ではR1を抑制し、J13はR1、R3を抑制、J24はR2、R4を抑制、J245はR2、R4、R5を抑制、J5、J5/1はいずれもR5を抑制した。

次にこれらの抗体がヒドラのどの部位に結合するのかを免疫蛍光抗体法、酵素抗体法で調べてみた。

図6にJ245による染色像（図6A、C）および位相差像（図6B、D）を示す。図6Aは触手の蛍光抗体法による像である。ここでは、デズモネム刺胞細胞の刺針とそれに接する細胞の頂部が蛍光を発している。図6Cは酵素（西洋ワサビベロキシダーゼ）抗体法による染色像であるが、Aより拡大であり、デズモネム刺胞細胞とともにステノーテル刺胞細胞の刺針が染色されている。

図7にJ24による染色像（A）と同じ視野の位相差像（B）を示す。J24は刺胞細胞の刺針の部分のみに結合する。図8にJ5による像を示す。J5は刺胞細胞の頂部（外界に面している）のみに結合した。応答の抑制の結果を考慮合わせると、R2、R4 受容体は刺胞細胞の刺針のところで局在し、R5 受容体は刺胞細胞の頂部に局在しているものと考えられる。

J1、J13 による染色像を図9に示す。これらの抗体はヒドラの体表面にスポット状の染色像を示したが、これらのスポット構造はどの細胞に由来するものかは同定できなかった。J1とJ13で同じ構造を染色しているかどうか不明であった
図9. 抗体J13による染色像. 全顕標本での蛻光抗体法による染色像（A）、同一視野の位相差像（B）、写真は触手一触肢の連結部分を示している。白線は50μm。図10. 食前食後の血清（○）、脳脊髄液（ネズミ）存在下でのヒドラのグルタチオン応答. 血清（○、●）は0.1％、脳脊髄液（□、■）は0.001％外液中に加えた。食前の試料（白ぬき記号）ではR4抑制活性は弱い（殆どない）が、食後の試料（黒記号）はR4抑制活性を含む。図11. 経時的に採取されたネズミ脳脊髄液中のR2、R4抑制活性. 抑制活性は0.25％牛血清アルブミン溶液で希釈していって最大抑制の50％の抑制活性が観察される希釈度（R2抑制活性）、あるいは抑制が観察される最大希釈度（R4抑制活性）の対数で示している（横軸）、縦軸には採取した時刻を示す。2日目の17：00までには食物を与えていない、その後食物を与える（□、■）か、グルコース（300mg/kg体重）を腹腔内に投与（○、●）した。白ぬき記号はR4抑制活性を示し、黒記号はR2抑制活性を示す。脳脊髄液は免疫ニューモレにより採取した（Carlos R. Plata-Salamon氏による）。各点は6-7試料の平均値と標準偏差を示す。
表5．食後増加するR2抑製活性に対する抗PDGF抗体の効果。

<table>
<thead>
<tr>
<th>試料</th>
<th>抑制1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>%</td>
</tr>
<tr>
<td>人血清2)</td>
<td>68.2±9.2</td>
</tr>
<tr>
<td>ネズミ脳脊髄液3)</td>
<td>76.6±5.2</td>
</tr>
</tbody>
</table>

1) 抑制の表示
2) 抗体の使用方法等は表1と同じ。
3) 脳脊髄液をプールして44,000倍に希釈して使用。
4) 第Ⅲ脳室より食後採取した脳脊髄液を4.0×10⁶希釈して使用。
5) Student's t-testで有意。p<0.01

図12．食事に伴う人血清中のPDGF含量の変化。朝食前に採取し、昼食を与えた後30分、3.5時間後にも採血した。この血液試料より血清を調製し、そのPDGF含量をヒドラのR2抑制活性（○）、放射免疫法（●）で調べた。放射免疫法によるPDGF含量の測定はDr. E. W. Raines & R. Rossによる。被検者は健康な男女（21-40歳）であるが、同様に検査をうめた。

11）同様の変化は人血清についても見いだされたが、同時に調製された血漿中にはこのような活性は見いだされなかった。食後血漿中にはグルコース、グルタミン、カルシトニン、インシュリン、血圧などの変化が増加することが知られているが、抑制活性が血漿中には見いだされないことから、抑制活性はこれらの物質に媒介されているのではないかことが考えられる。

さて、R2、R4はPDGF、aFGFでそれぞれ強く修飾されるが、食後増加する抑制活性はこれら細胞増殖因子といかなる関係にあるであろうか。R2抑制活性については抗PDGF抗体の効果を調べた。人の血清の場合食後増加するR2抑制活性は抗PDGF抗体によって完全に中和される（表5）。この効果は抗PDGF抗体以外では観察されず、特異的である。ネズミ脳脊髄液の場合でも有意に抑制活性が中和される。この結果から、食後増加するR2抑制活性はPDGF関連物質と考えられる。食前食後で得られた血漿より調製した人の血清中のPDGF含量は、放射免疫法では変化していなかった（図12、Dr. Raines & Ross私信）。また、マウス、人線維芽細胞に対する増殖促進能も食前食後の血清に変化は見いだされなかった。したがって食後増加するR2抑制活性はヒドラによってのみ検出されるPDGF関連物質と考えられる。

R4抑制活性については、脳脊髄液での変化が著明であるので、これについてヘパリンセファロースカラムでの振舞いを調べてみた。aFGFは
表7. 食前食後に採取した脳脊髄液中の細胞増殖促進活性。

<table>
<thead>
<tr>
<th>採取した時刻</th>
<th>12:00</th>
<th>17:00</th>
<th>17:00</th>
<th>19:30</th>
</tr>
</thead>
<tbody>
<tr>
<td>ニュート</td>
<td>39.2±9.9*</td>
<td>40.6±11.0</td>
<td>38.2±15.3</td>
<td>30.4±6.2</td>
</tr>
</tbody>
</table>

1) 最初の日と次の日の17:00まではエサを与えず、脳脊髄液を採取。2日目の17:00の試料を採取した後、300–500 mg/kg体重のグルコースを腹腔内に投与して、19:30に脳脊髄液を採取。グルコースの投与はエサを与えるのと同じ効果をもつ（図11参照）。
2) 細胞増殖促進活性はBALB/3T3細胞での3Hチソジン取り込み促進能で測定。1%牛血清の基質促進能を1ニュートとした。各測定は5匹分の脳脊髄液についての5回の測定平均値と標準偏差を示す。西川克三博士（金沢医大・生化）によるデータ。

ヘパリンに高い親和性を示す。ヘパリンカラムに吸着したaFGFは1 M NaClで溶出し、bFGFは2 M NaClで溶出する。脳脊髄液をヘパリンカラムにかけ、0.6 M NaCl、1 M NaClで溶出した。

R4抑制活性はヘパリンカラムに吸着し、1 M NaClで溶出し、aFGFと同じように振舞った（表6）。一方、BALB/3T3線維芽細胞に対する脳脊髄液の増殖促進能を調べた（金沢医大・西川克三教授に依頼）。R4抑制活性の強さから考えて、抑制活性の本態がaFGFであるならば、增殖促進能は十分検出されると考えられる。

表8. aFGFの脳室内投与による摂食量の減少

<table>
<thead>
<tr>
<th>グループ</th>
<th>時間</th>
<th>前日の摂食量 (g)</th>
<th>投与日の摂食量 (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>aFGFを投与（6匹）</td>
<td>20:00-22:00</td>
<td>6.8±1.4</td>
<td>4.6±1.1**</td>
</tr>
<tr>
<td>106 ng/rat</td>
<td>20:00-08:00</td>
<td>23.8±3.2</td>
<td>18.5±1.7*</td>
</tr>
<tr>
<td>aFGFを投与（10匹）</td>
<td>20:00-22:00</td>
<td>6.1±1.3</td>
<td>4.0±1.0*</td>
</tr>
<tr>
<td>220 ng/rat</td>
<td>20:00-08:00</td>
<td>21.3±1.3</td>
<td>17.2±3.8*</td>
</tr>
<tr>
<td>熱処理aFGFを投与（10匹）</td>
<td>20:00-22:00</td>
<td>5.7±1.0</td>
<td>5.6±1.6</td>
</tr>
<tr>
<td>220 ng/rat</td>
<td>20:00-08:00</td>
<td>21.9±2.1</td>
<td>21.3±2.6</td>
</tr>
</tbody>
</table>

1) 第3脳室に慢性カニューレを設置し、1週間から10日間処理させたネズミを使用。
2) 20:00-22:00は最終の2時間の間に摂食量を示し、20:00-08:00は1日の摂食量を示す。

* p<0.01 (paired-sample student's t test)
** p<0.02
Carlos R. Plata-Salaman氏による（九州大学医学部第一生理）
図13．視床下部外側野のグルコース感受性ニューロンに対するaFGFの効果
視床下部外側野の視核細胞の活動を電気生理学的に記録している。横軸は時間の経過を示し、縦軸は自発放電の頻度を示している。各実験は多変電極で電気泳動的に投与されている（各実験の下の横線が投与した時間を示し、数字は流した電流（mA）を示す）。Na投与では活動は変化しないが、グルコース投与で自発放電が減少している。これはグルコース感受性ニューロンからの記録であることを示している。次にaFGFを投与すると長い潜時（8.5分）の後自発放電はほとんどなくなっているが18分後に回復している。しかしこの間にグルタミン酸(Glu)の投与で放電が起こっている。

の調節機構に対して新知見が得られたのは大きな成果である。この際、摂食と細胞増殖因子との関係が示唆されたことは、細胞増殖因子が、発癌、動脈硬化、脳管形成、内皮細胞の増殖、神経細胞の栄養因子などその広範囲な生物学的活性を考えると、食事と疾病、心身症、肥満、老化、痴呆、学習などの理解に今後新視点を切り聞くことが考えられる。このような観点から考えた場合、以下の説明は今後の課題であろう。

1．ヒドラーのグルタミン酸受容分子の機能の解明：高等動物の中枢組織内部で働いていると考えられる因子が、神経系を備えた中では最下等動物でもはやり摂食を調節する因子として働くこと、摂食調節機能には動物界全般で共通する部分があることを示唆している。このことは逆にヒドラーのような下等動物の知見が、高等動物で働いている機構を探る上で有益であることを示唆している。一方、ヒドラーは高等動物に比べてその行動の種類も少なく、飼料を取って増えず（個体数の増加を結局は構成細胞の増殖の結果とみなせ）のことも短命であり、細胞増殖因子の効果も極微量を外液中に投与するだけで観察できる。幸い、現在得られているモノクローナル抗体はヒドラー用受容体に対する抗体である可能性が高い。現在、免疫抑制剤を利用してさらに特異性の高い抗体の開発も行なっており、R1-R5のそれぞれにモノスケシミックな抗体もほぼ開発できている。今後これらの抗体を手掛にして、受容機構を分子レベルで解明したいと考えている。

2．食後脳脊髄液中に増加するR2抑制活性：R4抑制活性を生化学的に解析すること：R2、R4抑制活性はそれぞれPDGF、aFGFに類似していることが示されたが、その本態はまだ明らかでない。これをはっきりさせることは急務であり、そのゴールには我々が一番近いにいる。この活性はヒドラーのみ超敏度で検出され、他のいかなる方法でも検出できないからである。様々な状況を観察
から、R4抑制活性はaFGFの部分ペプチドではないかと考えている。できるだけ早くこれをはっきりさせ、より一般的な検出法を確立し、その神経生理学的効果の検討に着手したいと考えている。aFGFは細胞増殖を必要とせず再生力も弱いとされる脳組織に大量に見いだされるが、その脳内での役割は不明である。したがってaFGFの部分ペプチドが本能行動や情動行動を調節する体液性因子として働くという立場は魅力的な仮説である。このペプチドの活性調節機構（活性発現、不活性化）は複雑であり、各段階での異様が様々な病態につながることが考えられるからである。

3. 下等動物での内因性細胞増殖因子：ヒドラでは摂食の調節に細胞増殖因子が直接に関与しているのはありそうなことである。ヒドラでは古くより、摂食後数時間後で分裂中の細胞数が顕著に増加することが知られている。このことから摂食に伴って細胞増殖因子が放出されていることが示唆される。また予備的な実験によると、ヒドラを体転のところで切断するとBALB/3T3細胞で検出される細胞増殖促進活性が放出される。この活性は摂食直後ではなくながら増加するという結果も得ている。これらのことより、摂食に伴って細胞増殖因子が放出され、それが摂食の調節に関与していると考えられる。本研究によれば、これに類似した機構が高等動物の中枢でも働いているわけであるが、下等動物の細胞増殖因子がどのようなものであるかは興味あるところである。このような知見は、細胞増殖因子の生物学を考える上で重要であり、動物を理解する上で新しい視点を提供すると期待される。

4. 細胞増殖因子の活性調節機構：細胞増殖因子は多くauto crine、またはparacrineに分泌される。一般に体液中には多量の結合蛋白（不活性化蛋白）があり、その活性はきわめて短時間の方じに作用する。例えばサルの血液中に合量のPDGFを注入しても、5分以内にその活性は循環系から消失してしまう。血清中にのみ、R2、R4抑圧活性が見いだされるが、これらの活性調節機構は複雑であることを示唆している。これからはやはり血小板由来のものと考えられるが、血小板内蛋白が食後すみやかに増加することはとても理解できない。これは血漿中にこれらの活性化を制御する重要な因子があると考える方であろう。したがって、食後血漿中に増加する細胞増殖因子活性の活性示現の機構は複雑なもののが予想される。そしてこの機構の解明は食事と病態を考える上で重要を提供することが期待される。

今後老年人口が増加する一方で社会の生産性も高めなければならないという要求のもとでは、これまでの治癒や医療から予防する医療にも力を注ぎ、あるいはもう一歩すすめられて人々がその能力を最大限発揮しつつ健康に暮せる社会を作り出してゆかねばならない。食事に関する事柄の検討はこのための重要な柱の一つと考えられる。本研究の今後の課題として、この点を科学的に検討できる新しい視点を確立することが最重要と考えられる。

謝辞

本研究を実行するにあたり日産科学振興財団よりの援助に感謝します。また九州医師会医学部第一生理、大村裕教授および研究室一同には実験に協力していただきましたことを感謝します。特にCarlos R. Plata-Salaman氏には多大なご支援をいただきました。幸いもこの大きな支援をいただければならない、一部の実験を題名いただけましたので感謝します。Drs. E. W. Raines and R. Ross (Dept. Pathology, Univ. of Washington, Seattle, WA). Dr. A. Baird (The Salk Institute, San Diego, CA), 加藤正雄博士（国立循環器病センター研究所），西川克三博士（金沢医大・生化学），菊本芳和博士（大塚製薬），井上了博士（大日本製薬），平野俊夫博士・岸本忠三博士（阪大・細胞工学センター）。また著者の皆様に最終観地をしました森田弘道教授に感謝します。

文献

Hanai, K. 1981: A new quantitative analysis of the feeding response in Hydra japonica: stimulatory effects of amino-acids in addition to reduced
Hanai, K., C. R. Plata-Salaman, Y. Oomura, Y. Kai, K. Nishikawa and H. Morita: A substance related to acidic fibroblast growth factor may participate in the regulation of food intake in higher animals. manuscript in preparation.