Taste- and olfaction-mimetic sensing by excitable artificial membranes

Chemical sensors that can detect various molecular species at low concentrations would be useful. The electrodes developed so far, such as, pH electrodes, measure the activities of test ions in solution as D. C. voltage differences generated when electrodes are immersed in solutions of these ions. In taste and olfaction, in contrast, electrical impulses in the nerve are generated at sensory organs by various chemical stimuli, that is, chemical information on chemical structure and concentration is converted into frequencies of nerve impulses. Thus to mimic the molecular mechanism of recognition in sensory organs, an excitable artificial sensing system must be developed.

In the present article, we will show the possibilities of developing a new type of chemical sensor capable of distinguishing various chemical substances on the basis of information on the frequency and the shape of impulses.

1. It was found that a simple liquid membrane showed characteristic responses to inorganic ions, alcohols and sugars in a similar manner to biological chemoreceptive membrane. The liquid membrane consisted of an oil layer between two aqueous layers: that on left containing a cationic surfactant. This system showed sustained rhythmic oscillations of electrical potential of 200-400 mV with an interval in the order of 1 min. The frequency, amplitude and shape of impulses changed markedly with the addition of various chemical species to the aqueous phase. When optical active detergents were used, the frequencies of the oscillation were found to be different between chiral amino acids or sugars present in the aqueous phase.

2. It was found for the first time that oscillation occurred at an oil–water interface in the presence of anionic surfactants.

3. Studies were made on the electrical potential across a liquid membrane consisting of an oil layer, oleic acid, between aqueous solutions of NaCl and KCl. When the oil phase was exposed to amine vapor, the system showed periodic changes of electrical potential of 10–20 mV. It is suggested that this system can serve as a model of biological olfactory transduction.

4. It was found that spontaneous firing can occur for the membrane made of various lipid molecules having the oleyl moiety, monoolein, triolein and Span-80. It is demonstrated that an Na+/K+ concentration gradient can cause excitation in a Langmuir–Blodgett film of dioleyllecithin.

5. It was shown that the excitable artificial membranes developed by the present authors
研究目的

味覚・嗅覚と類似の機能をもつ人工的な化学センサは、未だ開発されていない。味刺激・嗅刺激は、化学受容器を介して神経系に電気的信号として変換されるが、このとき受容器を構成する細胞膜の“興奮現象”が関係している。すなわち、外部からの化学情報は、神経系においては電位の波型変動として知覚されている。このような生体における化学受容器の機構を学ぶならば、人工系においても、膜の“興奮現象”を利用して味覚・嗅覚類似機能をもつ化学センサの開発に当って重要であることを気付く。代表研究者は、最近、興奮性を有する数種類の人工膜（液体膜、多孔質膜およびキャストした固体膜）の開発に成功してきている。さらに、これらの人工膜がさまざまな化学物質に対して、特異的な電気的応答（膜電位の振動）を示すことを見だしてきている。本研究では、これらの成果に立脚して、“電気的な興奮現象を利用した全く新しいタイプの化学センサ”を作ることを目的とする。従来、pH電極や各種イオン電極などが化学センサとして用いられてきた。また近年になってFET型センサが開発され、センサの多機能化やインテリジェント化をめざす研究も進んでいる。しかしながら、これらはいずれも化学的物理を直流電圧（電流）に変換するものであった。そのため、電位（電流）変化が、感応器との選択的な相互作用によるものか単純な物理的吸着・汚れによるものかの区別が原理的に不可能であった。このような欠点は、血液などの生体試料分析には致命的な問題点となる。これに対し本研究は、電位の非線形な振動をもって化学的特性を表出するものである。この場合、電位の振動数・振幅・波形・変調度などに化学物質の構造・濃度に関する情報が含まれる。これらの多様な情報により、化学物質を識別・認知するシステムを作ることをめざして研究を行なった。

研究経過

以下の事項に重点を置いて研究をすすめた。

① 腦津性膜の改良

従来、本研究者らが開発してきた脳津性膜をもつ人工膜は、①水-油-水からなる液体膜、②多孔質膜（メソポア・フィルター）に種々の脂質を含浸させた膜、③PVC（ポリ塩化ビニル）など支持体として、脂質を混入させて、キャスト法により作った固体膜、の3種類である。本研究では、これらの膜の改良を試みた。具体的には、次のようないずれの実験を行なった。

② 液体膜については、実験の再現性は極めて良好、化学物質に対する電位応答（電気化学的振動）についても、優れた情報を与えてくれる。そこで、この液体膜系の化学物質に対する応答性・選択性の向上をめざした。その結果、各種種類を振動の周波数変調度から識別できることや、アミノ酸・糖のchiralityにより振動周波数が変わる現象も見いだした。また、陰イオン性の界面活性剤を用いた液体膜で、安定な電気的振動を生じさせることに成功した。この液体膜系は、従来の陽イオン性界面活性剤を用いた興奮性液体膜とは、電気振動の化学応答の様子が著しく異なっていることも明らかとなった。また、この発見は、油水界面での発現現象が、特殊な現象ではなく、かなり一般的に生じ得るものであることを示した点において、界面化学の常識を覆すものとなっている。
Blodgett の方法により、より均質的な薄膜を作り、電気的特性の研究を行なった。さらに、脂質の化学的構造を変えるときの、発振現象への影響も調べた。

実験の観点からみると興奮性を有する、安定な固体膜の開発が望まれる。そこで、合成高分子を素材とした興奮性人工膜の製作を行なった。

嗅覚類似機能をもつ興奮性膜を試作した。アミン蒸気に応答し、電気的発振を示す液体膜を作ることが出来た。

光に応答する系として、ケイ光が光照射下、経時に振動する現象を見いだした。

興奮性膜の電気的特性の解析と、興奮の分子レベルでの機構

1. 本研究結果により、複数インピーダンス計を購入することができた。これにより、上記の各種人工膜について電気的特性を計測できるようになった。その結果、これらの人工膜は、負性抵抗・スイテング・記憶効果などの特性を示すことがわかった。

2. 人工膜の興奮現象の機構を、非線形非平衡の熱力学により解析した。現象論的非線形立微分方程式をたてることにより、油水界面での発振現象を計算機でシミュレートすることができた。

3. 以上の、実験および理論的研究結果に基づき、さらに新しい興奮性膜を作るための、分子設計上の指針を提案した。

研究結果

興奮性人工膜に関する本研究者からの研究結果について、次に説明したい。その際、研究全体の流れを明らかにするために、本研究助成による年度の成果以外のことも、一部加えて述べたい。

1. 陽イオン性界面活性剤を用いた液体膜の化学応答（興覚類似機能）

A. 実験系

図 1 に実験装置の概要を示した。内径 12 mm のガラス製 U 字管を用い、水−油−水 3 層からなる液膜系をつくった。油層には、1.5 mM ピクリン酸を含むニトロベンゼン溶液 4 ml、左側水層には CTAB (hexadecyltrimethylammonium bromide) 5 mM 水溶液を用い、右あるいは左側水層に各種化学物質を添加して左右水層間の電位変化を計測した。この液膜系では、水−油−水 3 層接触後、数分～数十分後に 100〜200 mV 程度の規則的な電位振動が生じる。この電位振動は、外部からの電位・電流・水圧などの外圧が一切存在しない状態で発生することに注目される。

B. 無機イオンに対する応答

図 2 に、KCl 存在下の振動とリン酸イオン存在下の振動を示した。このように、リン酸イオン
が存在すると、振幅が倍以上に増大し、振動回数も減少している。すなわち、この液膜では、陰イオンに対して、特異的な応答を示すことがわかる。

C. アルコール類に対する応答

右側水層に 0.1 M ショ糖、左側水層に 5 mM CTAB を用い、さらに、左側水層にエタノールを加えたときの電位振動を図 3 に示した。エタノール濃度が増大するに伴い、振動の頻度も増えていくことがわかる。同様な関係は他のアルキルアルコールを用いたときにもみられた。一般に、アルコール濃度を C、振動の頻度を f とすると、次の関係が成立することがわかった (a, b は定数)。

\[
\frac{C}{\log f} = \frac{C}{a} + \frac{1}{b}
\]

また、アルキル鎖が大きく、疎水性の高いアルコールほど、振動を引き起こしやすいことも明らかになった。

アルコールとして、ベンジルアルコールを加えたときには、電位パルスが低→高電位側に発生した。このことは、電位振動の波形にも、加えた物質の化学情報が含まれていることを意味している。

D. 糖類に対する応答

右側水層に 5 mM CTAB + 1.5 M エタノール水溶液を、右側水層に、各種糖類を加えたときの、電位振動を測定した。その結果、振動パターンが多く、加えた糖の構造に依存し特異的に変化することがわかった。図 4 には、横軸に \(\log f \) (f は頻度，sec^-1)、縦軸にパルスの数 \(n \) をとったヒストグラムを示した。a) ショ糖や各種ヘキソース C_{6}H_{12}O_{6} においてみられた。これに対し、b) のような分布の山が二つあるようなヒストグラムは、ヘキサチオ類 C_{6}H_{12}O_{6} についてみられた。

E. 光学異性体に対する応答

光学活性な陽イオン性界面活性剤として、\(N\alpha\)-methylbenzyl-\(N,N\)-dimethylmyristylammonium bromide の d, l 体を合成し、CTAB の代わりに
用いた。図5は、界面活性剤がL体のときのアラニンのd, L体に対する電位応答である。振幅が、200mV以上のパルスについてのみ、電位振動の頻度を調査した結果、d-アラニンでは、1.8min⁻¹, L-アラニンでは、0.35min⁻¹と約5倍も振動数が異なる。すなわち、この液膜系は、光学活性な化合物のchiralityを識別できる可能性のあることを示唆している。アラニン以外に、種々のアミノ酸や、糖類についても、同様の実験を行なったところ、同様に、この液膜の応答性（振動頻度）はL, D体によって特異的に変化することがわかった。

F. 振動の振幅・周期・波形と化学情報
以上の結果をまとめたのが図6である⑨。このように、この液膜系は、電位変化の大きさ・頻度・波形などにより、種々の化学物質を認識することができる、全く新しいタイプの化学センサとして発展させることが可能であることがわかる。本実験で見られるような振動は、非線形振動の一種であるとみなされる。実際に、適当な連立非線形微分方程式を仮定することにより、電位振動をシミュレートすることができる⑩。図7には、このような計算機シミュレーションの結果を示した。a)→b)になるに従い、陽イオン性界面活性剤の界面への移動速度を表すパラメータk_0を大きくしている。

k_0が大きくなると、振動頻度が減少していることがわかる。この結果は、図3の実験結果と対応しており、興味深い。

2) 陰イオン性界面活性剤を用いた液体膜の興奮現象⑪

用いた液膜系の実験装置は図1と同様である。20v/v%のアルコールを含むエトロベンゼンに、
<table>
<thead>
<tr>
<th>化学種</th>
<th>振動パターンの変化</th>
<th>注</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) 無機陰イオン</td>
<td></td>
<td>振巾の変化</td>
</tr>
<tr>
<td>[Cl⁻] ⇒ [P⁻]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2) アルコール</td>
<td>疏水性の増大</td>
<td>時波数の変化</td>
</tr>
<tr>
<td></td>
<td>⇒</td>
<td></td>
</tr>
<tr>
<td>3) 糖</td>
<td>ヘキソース ⇒ ヘキシット</td>
<td>時波数の変調</td>
</tr>
<tr>
<td>4) 芳香族アルコール</td>
<td>脂肪族アルコール ⇒ 芳香族アルコール</td>
<td>パルスの波形</td>
</tr>
</tbody>
</table>

図 6. 興奮性液体膜を、種々の化学物質に対する電位応答。

(a) 0.6

(b) 0.6

(c) 0.6

図 7. 電位振動の計算機シミュレーション。パラメータ$k_a=(a)$ 0.1, (b) 0.3, (c) 0.4.
図 8. SDS を用いた液体膜での電位の発振 a), 0.4 mM SDS 濃度: a), 0.4 mM, b) 0.04 mM. アルコール: a) 20% 1-プロパノール, b) 20% 1-ブタノール.

図 9. オリン酸油の実験装置 a)，(a) 水, (b) 酸溶液, (c) Ag/AgCl 電極, (d) アミン, (e) 0.5 M NaCl 水溶液, (f) 0.5 M KCl 水溶液.

図 10. オリン酸油膜の荷電に対する電位応答 a)，(a) メチルアミン, b) ピリジン, c) ピレリジン.

2,2'-ビビリジン 5 mM を溶かした溶液 4 ml を、内径 12 mm の U 字管の底に満たし、油膜とし、左側水層として 0.5 M NaCl 10 ml を、右側水層として 0.4 mM 陰イオン性界面活性剤を、各々 10 ml ずつ、水-油-水 3 層が混ざらないように接触させる。そして、25℃ 一定とし、左側水層を基準として、左右水層間電位で経時的に測定する。このとき、左側水層が一、右側水層が二となった。図 8 に自発的発振の例を示した。3 層接触後、2, 3 分の誘導期間を経て、振幅 4~5 mV, 周波数 0.5~0.6 Hz の振動が、約 20 分間続き、その後、徐々に減衰していく。(a) SDS 濃度を変えると、b) のように、振幅・周波数・電位差に変化がみられた。また、c), d) のようにアルコールの種類を変えると、振動の波形、持続時間にも大きな変化がみられた。

このように、陰イオン性界面活性剤を含む液膜系において、加える化学種の種類や濃度によって振動のパターンが変化することがわかった。

3) アミン蒸気による液体膜の興奮（嗅覚類似
機能）

次に、ソイオイ素質に応答する、興奮性の液体膜を作ることを試みた。図9に実験装置の模式図を示した。膜には、オレイン酸と1-プロパノールを9:1の割合で混合し、さらに、10 mMのtetraphenylphosphonium chlorideを加えたものを用いた。この脂溶性有機イオンは、油層の電気抵抗を減少させるために加えたものであり、このため、両液層間の電位変化を精度良く測定することが可能となっている。図10には、この液膜に、アミン蒸気をふれさせたときの、液層間の電位の経時変化を示した。一応、周期性があるとみなされる電位応答をしていることがわかる。なお、時々生じている断続的な電位変化は、液面の自発的な動きによるものである。

4) イオン濃度差によって駆動される脂質膜の興奮現象（神経類似機能）

生体膜において神経興奮現象が膜の外側、内側のNa⁺/K⁺イオン濃度差によって駆動されていること、よく知られている。最近、私達は、一方にNaCl、他方にKCl水溶液を用いた人工膜系（テフロントリアルセチルセルロースからなるメンプランフィルターにスパン80、モノオレイン、トリオレインを混合させた膜）において、何ら外部から電流、電圧などの外力を加えることなく自発的かつ周期的な振動を示すことを見いだした。図11には、このような膜における発振現象を模式的に示した。Na⁺/K⁺イオンによって発生する電位の符号や波形が、脂質によって特徴的に変化する。同様な現象は、ミリオア膜の表面にリン脂質のLangmuir-Blodgett膜をはりつけた膜系において観測されている。これらの脂質膜はNa⁺、K⁺以外のイオンによっても振動のパタンが変化することが期待される。電位の自発的振動は、高分子膜についても生じる。図12は、oleyl基の側鎖に付加された酸イオンの膜電位である。この場合にも、Na⁺、K⁺イオンに駆動
5) 興奮性膜の電気的特性—負性抵抗・スイッチング・記憶効果

人工膜の興奮性は、電気的な非線形形の特性と密接に関係している。図13には、リン脂質の薄膜（LB膜）の電流-電圧特性を示した。図14の非発振時の膜は、左右両水層のKCl、NaCl濃度が高い時の（0.3 M）のものである。下図では、0.5 MのKCl、NaClを用いている。上図では、ヒステリシス（記憶効果）、スイッチング、負性抵抗の現象が見られる。例えば、電流値を0 μAから増大させると、最初は電圧も同様に増大する。0.2 μAを越えると、電圧は急激に減少する（膜抵抗が減少）。次に、電流を減少させていくと、0.15〜0.1 μA付近から、電圧が増大していることがわかる（負性抵抗）。下図では、電流値が、−0.18〜+0.15 μA領域で、電位の発振が生じて
図 17. 無機イオンの濃度による周波数 f の変化

《NaCl, O: KCl, □: MgCl₂, ■: CaCl₂。

図 18. ConA 存在下での強制発振
(a) 0.1%, (b) 10⁻⁵% マンナン添加。

生体の中枢系での短期間の記憶は、神経のネットワーク（回路）での電気的信号として蓄えられているとみなされている。記憶の基礎となるような、非線形特性が人工膜系で見つかったことは、記憶のメカニズムを研究する上でもたいへん興味深い。

6) 強制発振を利用した化学的熱議会

化学センサとして利用するためには、測定したいときにだけ外部電源を接続して発振させる、強制発振型のほうが上記のような自発的な発振型よりも、都合が良い。L, ₃ 体を発振周波数や周波数変調度を利用して識別することや、無機イオンの定量などが可能であることが明らかになっている。

また、レクチンを用いることにより、水溶性中の多糖類を ppm オーダーまで検出・定量できる。このことは、抗原-抗体反応やガン細胞の検出にも応用可能であることを意味しており、今後の発展が期待される。これらの実験のうち一部を次に紹介したい。

A. 実験系

実験系の概要を図 15 に示した。2 本の白金電極（太さ 0.5 mm）を 4 mm 間して、試験液に 25 mm 浸し、発振波の周波数を、周波数測定装置で測定した。実験は 20℃で行なった。

B. 無機イオンの定量・定性

図 16 に SDS の濃度を変化させたときの周波数変化を示した。図のように、低濃度領域（0.01% 付近）において周波数が著しく変化することがわかった。そこで、0.01% SDS 存在下でいろいろな無機イオンを加えた時の周波数変化を観察した。この結果の結果を図 17 に示す。横軸は無機イオン濃度 (c) の対数、縦軸は周波数 (f) である。図に示すように、CaCl₂, MgCl₂ の周波数減少に対する効果が KCl, NaCl のそれより大きいことがわかる。例えば 100 μM では、約 700 Hz もの差となっている。また、Ca²⁺, Mg²⁺ に対するブロットでは約 20 μM 付近まで、ほぼ直線性が成立した。現在、より低濃度まで高い選択性で測定できるように、測定系を検討している。

C. レクチンを利用した多糖の検出・定量

図 18 に発振の一例を示した。これは、HEPES Buffer に飽和させた Con A 一定量に 0.1 および,
従来、物理化学的測定や電気的計測のためには、できるだけ“線形”に応答する系を選び、もっぱら直線的に変化する量についてのみ解析が行なわれてきた。しかしながら、自然界に存在する系は生物、無生物を問わず一般に“非線形”であり、“線形”な系はむしろ特殊である。今後このような“非線形現象”を積極的にとりあげて研究を進めると必要がある。生物は本質的に“非線形”な系とみなすことができるので、このような“非線形”な系の研究は生命現象の本質的な理解にもつながっていくはずである。

図 19. Con A 中の多糖の濃度による周波数の変化88. f_c: 多糖の存在しないとき, f: 多糖添加時の周波数, C: 重量 %。 (a) マンナン, (b) デンプン, (c) デキストラン。

図 20. 新しい型の外部情報認識システム21。

10^-6% のマンナン水溶液を添加したときの発振波形である。0% の場合は 227 Hz であり 10^-6% のマンナン水溶液を添加したときと同じ値を示したが、0.1% の場合には 242 Hz と増大し、定量が可能であった。また、図 19 にはレクチン中の多糖の周波数の濃度依存性を示した。でんぶんやデキストランは周波数にはほとんど影響していないことがわかる。これは、多糖に対する Con A の凝集作用が特異的に異なっているためと思われる。

また、Con A はがん細胞に特異的であることが知られている。以上より、このセンサでは、レクチンを利用して、多糖、糖タンパク質、糖脂質、あるいはがん細胞を検出すことが可能である。

7) 今後の課題

図 20 には、興奮性の人工膜を情報変換素子としたときの各種の外的刺激を認識するシステムの模式図を示した。現在では未だ夢物語にすぎないが、将来的にこのような新しい型の情報変換・認知システムが出来ても良いのではと考えている。

謝辞

日産科学振興財団の研究助成により、昭和 60 年度春年でありながら当初予定した以上の成果をあげることができました。得られた成果はまだまだ初步的なものといえますが、今後の研究の発展のための礎石は築くことができたと感じております。同財団に心からの謝意を表します。

本研究の遂行に当たって、次の研究者の方々、助言を得た。徳島大工学部高橋剛紀助教授、九州大学工学部春野甲博士、東北大学山崎道夫助教授、和歌山県立和歌山県立博士、南プロテイン大学 Colacico 教授に深く感謝します。また、本研究の成果は、研究に参加された、徳島大学の大学院生・学生諸氏努力の賜である。松原靖広（現京大化学）、森義仁（現北海大）、尾野部哲（現松山電工総研）、藤本貴司（現大塚製薬工場）、林俊平（現ナシディエン株）、中田聡、の諸君に感謝の意を表します。

—239—
文献
16) 吉川研一，石井進夫：神経類似機能をもつ興奮性人工膜，IONICS, 2 月号, 1 (1986).
20) 吉川研一：人工膜による分子認識-自能発振現象の応用, 膜, 10, 337 (1985).
21) 吉川研一：非線形非平衡の化学：リズムをめぐる化学反応, 高分子, 35(3) 244 (1986).