Induction of heritable tumors and anomalies in mice after parental exposure to radiation and chemicals

1. Significant numbers of tumors and anomalies were induced in F1 offspring after parental exposure of ICR mice to X-rays. The incidence of tumors (lung tumors, leukemias, ovarian tumors, etc.) in the offspring increased with increasing doses of X-rays. Postmeiotic stages were about twice as sensitive as gonial stages for tumor induction. Mature oocytes were resistant to low doses of X-rays up to 108 rad, but very sensitive to higher doses. Younger oocytes (8 to 21 days before ovulation) were more sensitive to X-rays for tumor induction in the offspring.

2. Parental treatment of ICR mice with urethane also induced significant numbers of tumors and anomalies in F1 offspring. Gonial stage was less sensitive than postmeiotic stages of male germ cells.

3. Tumors were induced in the offspring after paternal treatment of ICR mice with 4-nitroquinoline 1-oxide, but dominant lethals were not induced by 4-nitroquinoline 1-oxide and urethane.

4. Paternal exposure of different strains of mice (LT and N5) to X-rays similarly induced significant numbers of tumors (lung tumors, leukemias, etc.) in F1 offspring, indicating that our findings are not limited to the specific strain of mice.

5. Germ-line mutations causing lung tumors inherited to the next generations as a dominant trait with 40% penetrance.
かも、それが子孫代々に伝わるとしたらどうであろう。放射線やいくつかの化学物質により、子孫に突然の変異を誘発することはよく研究されているのだが、がんや奇形については「まさか」と思われたためか、全く研究されなかった。代表研究者は、15年間にわたり、2万匹以上のマウスを使い、X線を雄または雌親にあてると、子孫にがんや奇形が高率に誘発されることを確認し、その疑いのあることを示した。環境有毒要因が生殖細胞に作用した時に、子孫にがん、奇形等の障害を誘発するとしたら、人類の未来にとって重要な問題となる。したがって、本研究では作用原として放射線とともに数種の環境汚染物質を選び、(1)精子、卵細胞の差と変異、(2)生殖細胞発生段階での差、(3)がん、奇形誘発因子の遺伝性およびそれを修飾する因子の3点に焦点をしばり、3年計画で実験を行ない、これらを明らかにすることを目的とする。

研究経過・成果

1. がん突然変異

(1) はじめに

ヒトに対する放射線や化学変異原の遺伝的影響の程度はヒトの疫学的資料では決定的証拠がないため、マウスの生殖細胞に放射線を与えたときの突然変異の頻度から推定されている。その推定のほとんどは、Russellによる毛色素に関する特定の遺伝子座での劣性変異の放射線による誘発の資料に基づいている。近年、野村は、がん好発の特性が被曝マウスの次代に現われ、それが優性に遺伝することを発見した。この優性の発がん性突然変異は、著しく高い頻度で生じるのが大きな特色である。

(2) 方法と原理

雄または、雌のマウスに、X線または化学変異原を作用させた後に、一定の間隔をおいて正常マウスと交配した。一定の間隔をおくことに、重要な意味がある。照射あるいは注射してすぐ交配す
図2. 父または母ICRマウスへのX線照射による
F1での腫瘍発生。実験は急照射(72 rad/min)
を、破線は分割照射(36 rad、2時間間隔)を示す。

よりん結果は、卵細胞の成熟期が作用を受けた
うことになり、雄マウスへの作用が交配までの間隔
が長くなるほど、精子細胞期、精原細胞期の被曝
ということになる（図1）。

これら放射線又は化学変異原の作用を受けた性
細胞に由来する次代の仔について、腫瘍が発生す
るかどうかを調べる。

(3) 性細胞の発生段階での感受性の違い

雄ICRマウスの成熟精子期（交配の1〜7日前）
精子細胞期（交配の15〜21日前）および精原細胞期（交配の64日前）にX線を照射し、
非照射の雌マウスと交配した。F1を生後8カ月
で屠殺し、腫瘍を検出した。その結果を、図2に
示した。誘発された腫瘍の約90%は肺腫瘍であ
り、他に卵巢腫瘍、リンパ性白血病などが発生し
ている。照射線量としては、成熟精子期、精子細
胞期および精原細胞期に36、216、または504
radのX線を照射した。F1での腫瘍発生率は、図
2のように成熟精子期、および精子細胞期に照射
した場合は、直接的に増加し、504 radでは約
30%の高値を示した。精原細胞期に照射した場
合は、精子期、精子細胞期ほど、きれいな線量効
果曲線は示さなかったが、F1の肺腫瘍発生率は線
量とともに上昇している。しかし、発生率は減数
分裂終了後の精細胞の約1/2であり、低い感受性
を示した。

卵細胞に関しては、卵細胞よりかなばること4
週間以上たって正常雄と交配しても子供はできな
い。そこで、卵細胞1〜7日の卵細胞にX線を
36、108、216、360、および504 rad照射した。

図3. 父ICRマウスへのウレタン投与によるF1
での奇形、腫瘍発生。

F1での腫瘍発生率は図2に示したように108
radまで非照射の場合と差がなく、成熟卵はX線
に対し、抵抗性を示している。しかし、200 rad
を越えると急激に、腫瘍発生率は上昇した。卵細
胞はすべて低線量のX線に抵抗性を示すのと
いうと、そうでもない。雛マウスに一定量(216
rad)のX線を照射し、いわゆる間隔で正常雄と
交配してみた。もっとも古い卵細胞（排卵前8〜28
日）に照射すると、極めて高頻度に、F1に腫瘍
を誘発することがわかった。化学物質でも同じ結
果が得られた。図3、4に示したところ、ウレタン
(ethyl carbamate)をオースまたはメスICRマウス
に注射した場合にもF1に有意に高頻度に腫瘍が誘
発された。

(4) 性細胞の傷の修復能

F1での腫瘍発生を基準にして考えると、精原細
胞と成熟卵は何となくX線に対し抵抗性を示し
ているようである。これはなぜなのかを知るため
に、X線を少量ずつ分割して照射してみた。すな
わち、36 rad照射して、2時間ずつま、また36
rad照射することを繰り返した。その結果は、図
2の破線に示した通りで、1回照射の場合の実線
と比較してほしい。精子期、精子細胞期では、分
割照射しても、1回照射の場合と腫瘍発生率に差
はない。しかし、精原細胞と成熟卵に分割照射し
た場合は、F1には腫瘍は誘発されなかった。すな
わち精原細胞、および成熟卵は、少量の傷なら治してしまうことができると考えるのが妥当である。

劣性突然変異の放射線誘発に関しては、アメリカ・オーキリッジ国立研究所の Russell らによる膨大な資料がある。また Ehling による優性遺伝の特性を示す観察表を示し劣性突然変異の研究もある。これらの突然変異に示された「F1 で腫瘍を発生する原因」の放射線による起こり方を比較してみる。

表1に示す通り性細胞の時期による発生感受性の差、および発生頻度に及ぼす分割効果の有無をみても「F1 で腫瘍を発生する原因」と突然変異は、極めて似ていることがわかる。以上の結果は、F1 に腫瘍の発生をもたらした性細胞の変化は、突然変異そのものであることを強く示唆している。では、どのようにそれを証明したらよいのだろうか。

（5）肺腫瘍好発の特性は遺伝する

まず、精子細胞期に X 線 504 rad を 1 回照射し、正常雄と交配し、F1 を作成する。F1 には当然ながら高率に腫瘍が発生する。F1 を種殺する前

表1. マウスでの放射線誘発腫瘍突然変異と通常の突然変異の比較。

<table>
<thead>
<tr>
<th></th>
<th>胎 瘤</th>
<th>突然変異*</th>
</tr>
</thead>
<tbody>
<tr>
<td>感 受 性</td>
<td></td>
<td></td>
</tr>
<tr>
<td>精子と精子細胞</td>
<td>++++</td>
<td>++++</td>
</tr>
<tr>
<td>精 原 細 胞</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>卵 細 胞</td>
<td>++++</td>
<td>+++</td>
</tr>
<tr>
<td>分割効果</td>
<td></td>
<td></td>
</tr>
<tr>
<td>精子と精子細胞</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>精 原 細 胞</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>卵 細 胞</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

* 特定部位および優性骨格突然変異

図5. X線誘発マウス肺腫瘍の遺伝性。

表2. X線、4NQO, およびウレタンにより、次世代に誘発された肺腫瘍の遺伝性。

<table>
<thead>
<tr>
<th>種 (F1) の性質</th>
<th>次世代 (F2) での肺腫瘍発生率 (%)</th>
<th>X 線</th>
<th>4NQO</th>
</tr>
</thead>
<tbody>
<tr>
<td>+×−</td>
<td>15/76 (19.7)*</td>
<td>7/28 (25.0)**</td>
<td>4/19 (21.2)</td>
</tr>
<tr>
<td>−×−</td>
<td>4/69 (5.8)</td>
<td>5/103 (4.9)</td>
<td>9/113 (8.2)</td>
</tr>
</tbody>
</table>

* P<0.05。** P<0.01。
変異がX線を照射したマウスの性細胞に高頻度で起った。
3. 次世代での奇形
（1）はじめに
病気の中で、何がいちばん怖いですかと母親にたずねると、奇形とかんという答えがいちばん多い。最近の国発報告によると、少しでも遺伝的要因の関与している疾病が全疾病の10.7％を占め、そのうち40％以上が先天異常である。
本節では、胎仔期に作用を受けたために起こる奇形ではなくて、放射線や化学変異原に曝露されたマウスの次世代に、親への曝露が原因で奇形が起こるという実験的証拠を示す。
（2）親の因果が子に伝わるか
発生異常という言葉で示されるように奇形は、個体発生過程の何処かで異変が起こったため、正常と異なった形態を示す結果に至ったものである。したがって、器官原基形成期（いわゆる奇形の危険期）に放射線や化学物質を作用させることにより高率に奇形を誘発することができる。では、父または母親が、放射線や化学物質の曝露を受けた時、子供に奇形が発生するであろうか。子供に奇形を誘発することができるなら、性細胞に起こったなんらかの変化が、次世代に伝わって、奇形を遺したことになる。しかし、これは突然変異と同じ現象であるから、奇形検出のために膨大な数のマウスを必要とすると思われていた。しかし研究は、やってみなくてはわからないもので、あまり暑い奇形を調べることにより、わずかの数のマウスで実験が可能となった。
（3）親マウスへの放射線照射によるF1での奇形発生
図6に、精子および精液細胞、精子卵子細胞、成熟卵子に、X線を急照射あるいは分割照射した場合のF1での奇形（出産前および出産後）の線量効果曲線を示しておいた。誘発される奇形は、致死的なものとして口蓋裂、小人症、外脳症、腹壁破損など、生存可能なものとして、眼瞼開存、曲尾、小人症などがある。
奇形の場合は、精子、精子卵子細胞照射では、216 radまで、照射線量とともにF1での奇形発生率は上昇しているが、504 rad照射では、発生率の有意の上昇はみられない。この時期に大量照射すると図6に示すごとく、60％近くのF1が死亡（優性致死）している。そのために生存F1中の奇形の発生率が見掛け上、下ったものと思われる。優性致死に近い変異が精細胞に生じ奇形誘発の原因となっているものかもしれない。精細胞照射により、F1に奇形が発生しにくいことは、これによっても説明できる。
精細胞照射と異なり、卵細胞照射により高率にF1に奇形が誘発され、線量効果も観察された（図6）。奇形の発生率は、出生前に検出した方が、出生後に調べた場合よりはるかに高い。これは前述したように、誘発される奇形の大半は致死的なもので、出生直後に死亡してしまうからである。出生前に検出された奇形の倍加線量は、精子および精液細胞照射で約12 rad、精細胞発育は27 rad、卵細胞照射では19 radである。
化学変異原では図3、4に示すようにウレタンによってもF1に奇形が誘発されている。
このX線による奇形誘発の結果を発表したところ、イギリスの著名な遺伝学者M.F.Lyon女史が、たいへん興味を持ち、まったく同じ方法で、まったく同一X線線量で、異なった系統のマ
表3. N5父マウスへのX線照射（504 rad）によるF1での腫瘍発生。

<table>
<thead>
<tr>
<th>照射時期</th>
<th>腫瘍をもったマウス（%）</th>
<th>腫瘍（%）</th>
<th>白血病（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>精原細胞</td>
<td>76/229 (33.2)*</td>
<td>48/229 (21.0)</td>
<td>9/229 (3.9)*</td>
</tr>
<tr>
<td>対照</td>
<td>56/244 (23.0)</td>
<td>35/244 (14.3)</td>
<td>1/244 (0.4)</td>
</tr>
</tbody>
</table>

* P<0.05.

表4. LT父マウスへのX線照射（504 rad）によるF1での腫瘍発生。

<table>
<thead>
<tr>
<th>照射時期</th>
<th>腫瘍をもったマウス（%）</th>
<th>腫瘍（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>精子・精子細胞</td>
<td>16/75 (21.3)*</td>
<td>12/75 (16.0)*</td>
</tr>
<tr>
<td>対照</td>
<td>37/411 (9.0)</td>
<td>22/411 (5.4)</td>
</tr>
</tbody>
</table>

* P<0.01.

ウスを用い追試を行なった。その結果は、ICRマウスで行なった実験結果と一致した。このことにより、次世代での発がんの結果を合わせて、国連レポート（Nomura’s finding）となった。しかし、次世代の発がんについては、まだ、欧米での追試は成功していない。

(4) 奇形の遺伝性

生殖細胞に放射線を作用させることにより、F1に誘発された奇形であるか、通常の突然変異のように、さらに次世代にも遺伝していくかどうか非常に興味がもたれる。しかし、誘発される奇形の大半が致死的なものであること、また生存可能な奇形でも、小変症などは、不妊の場合が多く、遺伝性を調べられる例は限られていた。生存可能な奇形のうち、最も多い奇形である尾の奇形と眼瞼開存についてかなりの例数を調べることができた。尾の奇形は、極めて不規則で、遺伝する場合としない場合が混在していた。眼瞼開存は、低い浸透率で遺伝することがわかった。このように次世代に現れる奇形は、通常の突然変異と同じように性細胞に変異原を作用させて誘発されるにもかかわらず不規則、かつ、不確実な遺伝性を示している。

今後の課題

マウス個体に放射線を当てたときの肺腫瘍の発生の初期変化が体細胞の優性突然変異であるとすれば、その頻度はここで述べた「肺腫瘍をF1に発生させる優性突然変異」の精子における誘発頻度とかなりよく一致する。しかし、このことは、肺腫瘍を好発する優性突然変異がなぜ普通の突然変異より著しく高いのかという疑問を残す。この点に関しては、一応の説明をすることができるが、未解決の問題が残っていることも認めねばならない。

しかし、最近、ICR以外の2系統のマウスでも優性の発がん性突然変異を性細胞に誘発するのに成功したので、この現象は、一般的に起こるものと思われる（表3，4）。そうすると、この高頻度で起こる性細胞の突然変異は、放射線および環境有害物質のヒトへの危険度推定には極めて重要な問題を提供すると同時に、高感度遺伝障害検出法としての意味を持つことになる。

一方、次世代に誘発される奇形は、遺伝性が不明確であるのにかかわらず、重要な発見として、遺伝学者より評価されているのは、二つの理由がある。先ず第１に、奇形が、突然変異と同じように、放射線などにより次世代に誘発されることがわかったこと、そして、もう一つは、その頻度が高く、しかも短期に検出可能であり、数少ない遺伝障害の検出系の一つとして利用できることが挙げられる。

発表論文

13) 野村大成：ウレタンによる体細胞突然変異と発癌, トキシコロジーフォーラム, 6, 208-213 (1983).

20) 野村大成, 藤本隆之：受精卵子の卵生発癌産子の環境因子, 産婦人科の世界, 37, 45-51 (1985).

22) 野村大成：奇形の発世代的伝達, 実験医学, 3, 50-54 (1985).

