Particulate air pollutants inhaled in the human lung, partly deposit in the lung tissue and produce black-colored patches, the state called anthracosis. The qualitative and quantitative analyses of particulate pollutants (PP) accumulated in the lung tissue are seemed to be valuable to evaluate lung pollution. So, we performed elemental analysis of the PP in the human lung by several methods, combined with histopathological examination of the lung tissue.

The majority of cases used were obtained from our Saitama Medical School Hospital, and additional cases were collected from Tokyo, China and New York. Most of lungs were fixed by intratrachial formalin infusion. Degrees of anthracosis were analyzed by our image-analyzing system, and histological examination was carried out on every whole pulmonal cut surface devided into many small pieces. The mineral constitution of pollutants was analyzed by those of a wavelength-dispersive X-ray fluorescence analyzer, and an atomic absorption analyzer, and an energy-dispersive X-ray microanalyzer installed in a scanning electron microscope. Nuclear DNA content of cells was measured on isolated cells from paraffin-embedded tissue sections of lungs.

As results, the image-analysis on 111 autopy cases of Saitama Medical School revealed that total area of black-colored patches in total area of pulmonal cut surface were 0.05% in minimum, 17.95% in maximum, 3.41% in average. The intensity of anthracosis increased parallel with age and was severer in males than in females.

The wavelength-dispersive X-ray fluorescence analysis revealed high contents of Si, Ca, Mg, Fe and Al in the PP isolated from lungs of Saitama residents, while other trace elements were also found. In Saitama cases, PP of smokers showed a higher content of Fe, Zn, Pb and Ca as compared to non-smokers, and blue-collar workers showed higher content of Ca, Cu, Zn and Pb as compared to other occupational categories. In Kreyberg type-I lung cancer group (squamous cell cancers and small cell cancers), the level of some heavy metals such as Fe, Pb, Cr, Mn and Ni tended to be higher than Kreyberg type-II (adenocarcinomas) or non-cancer group, suggesting significant
pollution by heavy metals in these lung cancer cases. Differences of living places of patients exhibited apparent difference of elemental constitution of PP, namely, Si and Al were highest in China cases, lowest in New York cases and middle level in Saitama and Tokyo cases, while Mg, Cr, Mn and Ni were highest in New York cases and low level in China cases, suggesting soil-originated air pollution is dominant in China while pollutions derived from industrial activities are dominant in New York.

The histological examination revealed that accumulation of PP cause damage of alveolar wall to produce emphysema. Squamous metaplasia of bronchial epithelium was found correlating with smoking index and also with content of Fe in the PP. Adenomatous metaplasia of terminal bronchioles and alveoli was found correlating with age and also with content of Cd in the PP. Both types of metaplasia were found independent to the degrees of anthracosclerosis.

Elementary analysis on the scar tissue in lung cancer lesion by means of the energy-dispersive X-ray microanalyzer showed only higher Si content, and no significant higher level of carcinogenic metals such as Cr or Ni.

The atomic absorption analysis of lung tissue on 314 autopsy cases of Saitama residents revealed higher content of Fe, Cr, Ni and Pb in males, as compared to females.

Finally, we feel that the elemental analysis of the PP in the human lung represented valuable information about atmospheric pollution of the person in the past. In general, the increasing atmospheric pollution seemed to develop emphysema of lung, and the occurrence of lung cancers seemed to have closer correlation with cigarette smoking, and also with some particular pollution containing heavy metals, not with pollution of common type.

研究目的

近年の肺癌の増加ならびに呼吸器疾患の増加の原因として大気汚染が注目を集めている。大气を汚染する物質にはガス状汚染物質（gaseous pollutant）と粒子状汚染物質（particulate pollutant）があり、そのうちガス状汚染物質は、NOx, 亜硝酸ガス、一酸化炭素などであって、これらが肺組織を障害することは、武犯動物においても証明可能であっても、肝心の人においてこれを物的証拠を挙げて証明することは困難である。一方、粒子状汚染物質は粉塵および煤煙が主体であって、地面や路面から舞上がれる礫塵、石炭や石油系燃料や廃棄物などの煤蒸、タバコの煙、建築物の破壊などから発生する塵埃などが主体をなすが、鉱山や工場などの職場においてはその生産活動によって発生する特殊な粉塵が問題となる。これらの粉塵や煤蒸が肺に吸入されると、その大半は気道のけい酸機能により体外へ排泄されるが、その一部は粒子状沈着物として肺組織の一定の部位に蓄積し、その蓄積部は肉眼的にも黑色の斑点を示し、肺の炭粉症（anthracosclerosis）と呼ばれることを提唱。したがって、肺内の粒子状沈着物は、大气汚染がその人の肺に残した重要な証拠物質と思われる。大気中の粒子状汚染物質についての研究は数多くあるが、肺内に沈着した粒子状沈着物についての分析の報告は数少なく、また、これと肺の組織変化との関連についての研究報告は認められない。今回、我々は、この肺内粒子状沈着物の元素組成を分析することにより、その人が大気から受けた汚染の性状を推定するとともに、その他の方法によって肺内元素組成を検索し、一方では同じ肺を病理組織学的に検索して、肺の汚染に関連した組織変化を見いだし、その発生機序を推定することを試みたい。

研究成果および考察

今回の研究材料に用いた人の肺組織は、まず、比較的多数の症例を埼玉医科大学（以下、埼玉医大）の昭和59年から61年までの病理理解剖例ならびに一部肺癌手術例から得て、これを地方都市部の症例（以下、埼玉症例）とみなして分析し、次いで症例数は前者に比べて少ないが、大都市部の症例として、東京都立駒込総合病院の病理理解剖例ならびに肺癌手術例（以下、東京症例）および New York 市 Mount Sinai 医科大学の肺癌手術
ホルマリン固定肺より切り出し（30〜50 g）、細切
↓
水洗（1回）
↓
乾燥（120 ℃、24hr） ･･･ 重篤測定
↓
蒸留水でhomogenize
↓
遠心（10,000 X g、1 hr）
↓
40%〜KOHで肺組織溶解（90℃、5hr）
↓
遠心（10,000 X g、1 hr）
↓
沈殿をH2O、Acetone、EtOHで洗浄
↓
乾燥（120 ℃、3hr） ･･･
例）を用い、方法としては、既に報告した手法に従った。すなわち、ホルマリン固定の肺組織のパラフィンブロックより、光顕用の5μ切片と元素分析用の10μ切片を作製し、光顕用切片は日常の方法でヘマトキリン・エオジン染色を施し、顕微鏡で観察して分析対象となる部位を決定するのに用い、元素分析用切片はサーマノックス板に貼付、脱パラフィンし、1.5cm角に目的部位を切り取って試料台に両面テープで接着し、カーボンのみの蒸着を施し、S-500 走査電子顕微鏡（株）日立製作所製）に装着したX線微小分析装置 EDX 7000 D（Kevex 社製）で元素分析を行なった。分析の対象とした部位は、細気管支周囲、血管周囲、胸膜、肺炎組織および肺門部リンパ節の各部で炭粉沈着が高度な部分で、走査電顕で組織構造を観察して沈着物の存在を確認し、その部の15×15μm²の面積に、加速電流20 kV、照射電流10 A、計測時間100秒で計測した。元素から発生したX線強度の計算には内蔵のプログラム BKG を用い、各ピークを中心に170 eV 幅のウィンドーをかけるとともにバックグラウンドを除去し、残りを積算して当該元素の特性X線強度とした。分析の対象とした元素は、アルミニウム（Al）、硫黄（Si）、磷（P）、硫黄（S）、カリウム（K）、カルシウム（Ca）、チタン（Ti）、鉄（Fe）、銅（Cu）、マグネシウム（Mg）、塩素（Cl）、クロム（Cr）、マンガン（Mn）、コバルト（Co）、ニッケル（Ni）、亜鉛（Zn）、カドミウム（Cd）の17種類であり、各元素の量は、上記の全元素の特性X線強度の総和に対する各元素の百分率として相対的に算出した。切片上の計測は、各部位あたり4ないし8箇所を無作為に行ない、マイクロコンピュータ用で各元素の特性X線強度の平均値および標準偏差値を求めた。

6）原子吸光法

材料として、病理解剖により得られた肺より、原則として右上葉の病変の少ない部分より約100 gを採取し、その一部は組織標本作製に供し、残りを細切、乾燥し、精密切って、硝酸-過塩素酸により湿式灰化し、その一定重量を試料とし、AA-1100 原子吸光装置（Varian Ttechtron 社製）を用い、Cu, Zn, Fe, Mg, Ca の各元素については直接分析を、また鉛（Pb）、Ni, Cd, Co の各元素については試料を、たとえばキリジストロカルパミン酸のキレートとした後に4メチル-2ベンタノンにて抽出して分析を行なった。Cr については、乾燥し精製した組織を乾式灰化して硝酸にて溶解し、CRA-90 フレームレス原子化装置を用いて分析した。また、各元素濃度のデータは、分散分析により統計学的に比較した。

結果

1）画像解析による炭粉症の強度分類

検査した111例の年令は28～88歳、平均63歳、男女比6：4で、炭粉沈着の黑色斑点が肺の割合に占める面積比は、最大17.95％、最小0.05％、平均3.41％であり、炭粉症の強度分類としては、この黑色斑点の面積比が10％以上のものを高度炭粉症、10％未満で5％以上のものを中等度炭粉症、5％未満のものを軽度炭粉症と定めた。この炭粉症の強度別をみると、高度炭粉症は9例（8.1％）、中等度炭粉症は13例（11.7％）、軽度炭粉症は89例（80.2％）であった。炭粉症の強度と年令との関係では正の相関を示した（Fig. 2）。また、強度炭粉症の症例は60歳以上の高令者のみに見られた。肺葉別を比較してみると、まず上葉/下葉比は、右肺で最大26.20、最小0.08、平均3.29、左肺で最大27.25、最小0.26、平均4.28で、左右とも上葉が下葉に比べて平均値で3～4倍が高度であり、この炭粉の上葉集積傾向は左肺が右肺より
Table 1. Contents of each element in the mineral part of the particulate pollutants (％) represented by geometrical means，the ranges which include 95％ of data (in blackets) and the numbers of data (in parentheses) in each group.

↑: significantly higher than the other sex by Wilcoxon’s test (P=0.01).

<table>
<thead>
<tr>
<th>Elements</th>
<th>Si</th>
<th>Ca</th>
<th>Mg</th>
<th>Fe:Al</th>
<th>Cd</th>
<th>Cu</th>
<th>Pb</th>
<th>Zn</th>
<th>Cr</th>
<th>Mn</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>14.9</td>
<td>5.9</td>
<td>8.5</td>
<td>7.5</td>
<td>4.5</td>
<td>0.109</td>
<td>0.079</td>
<td>0.037</td>
<td>0.048</td>
<td>0.038</td>
<td>0.033</td>
</tr>
<tr>
<td></td>
<td>[5.4</td>
<td>[1.5</td>
<td>[2.8</td>
<td>[1.7</td>
<td>[0.027</td>
<td>[0.013</td>
<td>[0.004</td>
<td>[0.017</td>
<td>[0.011</td>
<td>[0.013</td>
<td>[0.002</td>
</tr>
<tr>
<td></td>
<td>~40.8</td>
<td>~23.0</td>
<td>~20.2</td>
<td>~19.6</td>
<td>~12.2</td>
<td>~0.485</td>
<td>~0.319</td>
<td>~0.137</td>
<td>~0.140</td>
<td>~0.087</td>
<td>~0.055</td>
</tr>
<tr>
<td></td>
<td>(n)</td>
<td>(72)</td>
<td>(72)</td>
<td>(59)</td>
<td>(73)</td>
<td>(73)</td>
<td>(69)</td>
<td>(73)</td>
<td>(69)</td>
<td>(84)</td>
<td>(67)</td>
</tr>
<tr>
<td>Female</td>
<td>15.3</td>
<td>6.7</td>
<td>9.6</td>
<td>5.0</td>
<td>4.5</td>
<td>0.121</td>
<td>0.114</td>
<td>0.051</td>
<td>0.055</td>
<td>0.039</td>
<td>0.035</td>
</tr>
<tr>
<td></td>
<td>[4.9</td>
<td>[1.8</td>
<td>[3.9</td>
<td>[2.0</td>
<td>[1.4</td>
<td>[0.004</td>
<td>[0.006</td>
<td>[0.002</td>
<td>[0.006</td>
<td>[0.011</td>
<td>[0.009</td>
</tr>
<tr>
<td></td>
<td>~38.0</td>
<td>~28.0</td>
<td>~25.8</td>
<td>~12.2</td>
<td>~14.0</td>
<td>~0.430</td>
<td>~0.368</td>
<td>~0.173</td>
<td>~0.093</td>
<td>~0.079</td>
<td>~0.046</td>
</tr>
<tr>
<td></td>
<td>(n)</td>
<td>(39)</td>
</tr>
</tbody>
</table>

強い傾向にあった。上葉を左右で比べると、右上葉/左上葉比は最大 4.82、最小 0.02、平均 1.21、と右上葉の炭粉症がやや優位であった。また、下葉を左右で比べると、右下葉/左下葉比は最大 59.5、最小 0.09、平均 2.40 で、下葉では右肺の炭粉症が明らかに高値であった。炭粉症程度と組織変化との関連では、炭粉症が肺気腫の発生に深く関連していたが、肺気腫発生との関連性は証明できず、また肺末梢に発生した化生性の病変との関連性も現在のところ証明出来ない。

2) 肺から分離された粒子状沈着物についての蛍光 X 線元素分析

肺から分離された粒子状沈着物の組織内濃度について、埼玉県の症例について、炭粉症の有無および職業別にグループ分けして比較検討したが、各グループの平均値の関には統計的に有意の差はみられなかった。しかし男女別でみると、男性のほうが女性よりも有意に高い平均値を示した（既に平均値が男 1.12％、女 0.84％。また、炭粉症の程度と粒子状沈着物の濃度は統計的に有意に相関していた。

元素分析の結果を (Table 1) に示したが、粒子状沈着物中の濃度が最も高い無機成分は Si で、次いで Ca, Mg, Fe, Al, その他の微量元素 (Cd, Cu, Pb, Zn, Cr, Mn, Ni など) が続いた。男女差についてみると、Fe は男性の方が有意に高く、Mg と女性の方が有意に高い平均値を示した。喫煙者との関連では、男性の喫煙者では Ca, Fe, Zn, Pb の値が非喫煙者よりも有意に高い平均値を示したが、女性では喫煙者と非喫煙者の間に有意な差はみられなかった。職業界によって分類すると、女性の農業従事者の群で Si と Al の値が他群より有意に高く、男性の肉厚労働者の群で Ca, Zn, Pb が他の群より有意に高かった。また、症例を非肺癌例、Kreyberg-I 型肺癌例（扁平上皮癌、小細胞癌）（肺門部肺癌が多い）、Kreyberg-II 型肺癌例（腺癌）（末梢部肺癌が多い）に分類した場合、Kreyberg-I 型の肺癌において、重金属汚染が比較的高値であることが示された (Fig. 3)。地域差をみるため、埼玉県の症例と、東京都、中国山形県、New York 市の症例を比較すると、粒子状沈着物の組織内濃度について有意な差はみられなかったが、粒子状沈着物中の元素濃度には大きな地域差がみられた (Fig. 4)。すなわち、Si, Al は中国山形県で最も高く、New York 市で最も低く、埼玉県の症例は両者の中間の値であるが、埼玉県症例は中国例にやや近く、東京例は New York 市例にやや近
かった。他方、Mg, Cr, Mn, Ni の値は New York 症例で最も高く、中国のそれは概して低かった。その他、Ca, Cd, Pb, Zn についても統計的な有意な地域差がみられた。

3) 病理組織学的検索

肺の組織学的検索に際しては、病変を下記のように分けて検討した。

A. 黒色粒状沈着物（炭粉沈着）と直接関連する病変（炭粉関連病変）

B. 黒色粒状沈着物（炭粒沈着）とは直接には関連しない病変（合併病変）

炭粉関連病変は、炭粉沈着の部位に普遍的に認められる病変を指すものであり、合併病変は、部位的には炭粉沈着部から離れて認められる病変であるが、粘膜上皮の化生のような大気汚染との関連もありうる病変を指し、細菌性肺炎や肺梗塞などのように炭粉以外の原因によることが明瞭なもののは含めない。

A. 炭粉関連病変

これには、肺気腫、細気管支周囲性線維症、血管周囲性線維症、胸膜肥厚、症肺結節などが含まれ、その中で肺気腫は最も重大な病変へ発展していた。炭粉沈着の軽症例においては、炭粉は呼吸細気管支周囲の結合組織内に食細胞に貪食された形で存在していたが (Photo 1)、詳細に見ると、肺小葉中心部の肺胞の隔壁内にも単独あるいは食細胞に貪食された形で認められる (Photo 2)。その際、同部の肺胞壁はほとんど正常の構造を保つ場合もあるが (Photo 3)、多くはなんらかの程度に肺胞壁が断裂して小葉中心性の肺気腫を形成してい
Photo 1. Large amount of black-colored particulate pollutants (arrows) accumulated in fibrotic peribronchiolar tissue of human lung. 71 year-old male. 200×.

Photo 2. Small amount of black-colored particulate pollutants collected in macrophages (arrows) in alveolar wall of lung. Same tissue of Photo 1. 200×.
Photo. 3. Almost normal alveolar saccular structure of lung. Accumulation of particulate pollutants is minimum. 17 year-old male. 40×.

Photo. 4. Early phase of emphysema. Alveolar walls were partly disrupted and resulting wider alveolar air spaces (emphysema) (*). Accumulation of particulate pollutants (arrow) are mild in degree. 28 year-old, female. 40×.
Photo. 5. Moderately advanced emphysema. Disruption of alveolar walls are enhanced, normal-looking alveoli diminished in number, and air-spaces became wider (*). Accumulation of particulate pollutants (arrows) is moderate. 57 year-old, male. 40×.

Photo. 6. Most severely advanced emphysema. Disruption of alveoli became widespread, and normal-looking alveoli are markedly diminished in number, and air-space (*) become very wide. Accumulation of black-colored pollutants is very severe. 57 year-old, male. 40×.
Fig. 5. Relation between age and occurrence of metaplasia in respiratory tract.

た (Photo. 4)。炭粉沈着の程度が高くなるにつれて、肺気腫は小葉中心から肺小葉周辺に向かって不規則に拡大し、汎小葉性肺気腫をきたす（Photo. 5）。ある公害病認定患者のようない重症例においては、肺気腫が肺小葉単位を越えて相互に癒合して肺実質を広汎に破壊し、肺縦 pulmonal phthisis の形態を呈していた (Photo. 6)。

細気管支間葉性線維症、血管間葉性線維症および胸膜肥厚は、炭粉量にほぼ比例した程度に認められ、線維性肺胞は高率に相関した肺門部リンパ節に認められたが、これらの病変は、肺気腫ほどは重大的な肺病変へと進行したものは認められなかった。

B. 合併病変

これには、気管支粘膜、血管支粘膜、および肺胞の各上皮細胞の化生および過形成を取り上げた。気管支粘膜上皮の化生はすべて扁平上皮化生であつたが、これは検査した 117 例の肺のうち 26 例 (22.2%) に認められ、その出現は年齢の高齢化と相関せず（Fig. 5 (a)）、喫煙指数と正の相関を示し（Fig. 6 (a)）、炭粉症と程度とは相関しなかった。その後の肺実は、太い気管支のみでなく末梢の気管支にも出現し、その範囲の広さは広範囲から点状までさまざまであった。これらの扁平上皮化生の細胞構成は、全く正常の扁平上皮の形態を示すものではなく、通常はなんらかの程度の異形成 dysplasia を伴っていた (Photo. 7)。また沈着物の元素との関連では、扁平上皮化生陽性例では沈着物中 Fe の濃度が高い傾向がみられた (P = 0.05)。

細気管支支以皮および肺胞皮の化生は、多くは腺様化生（立方上皮化生）であるが (Photo. 8)，まれに扁平上皮化生あるいは線毛上皮化生も見られた。このような化生は検査した 117 例の肺のうち 54 例 (46.2%) に認められ、その出現は年齢の高齢化と相関し (Fig. 5 (b))、喫煙指数 (Fig. 6 (b)) および炭粉症の程度とは相関しなかった。また、特に粒子状沈着物内の元素との関連では、陽性例では Cd の値が統計的に有意に高かった (P = 0.01)。その肺実分布は、肺末梢で、胸膜下から約 1 cm の領域にかけて出現することが多く、単発性に出現するものから、多発性に 1 cm 以上の広い範囲にわたって分布するものまでさまざまなで、線維症を伴うことが多いが (Photo. 9)。
Fig. 6. Relation between smoking index and occurrence of metaplasia in respiratory tract.

Photo. 7. Squamous metaplasia of bronchial mucosa. 72 year-old, male. 100×.
Photo. 8. Adenomatous metaplasia of alveoli of peripheral area of lung. 53 year-old, female. 40×.

Photo. 9. A part of Photo. 8. High-columnar cells are replacing flat alveolar cells (metaplasia). 100×.
Photo 10. Adenomatous metaplasia without cellular atypia. 54 year-old, male. 200×.

Photo 11. Adenomatous metaplasia showing cellular atypia. Nuclei and nucleoli are irregularly enlarged. 73 year-old, male. 200×.
Fig. 7. DNA distribution patterns of isolated cells from paraffin sections of bronchial epithelium.

Fig. 8. DNA distribution patterns of tissue sections of bronchiole and alveoli.

では証明できなかった。

組織切片上で直接に核DNAを測定する方法では、肺末梢部の細胞についてのヒストグラム上で、正常の肺細胞と、異型を示す分化生および腺癌の差が明らかであったが（Fig.8）、症例が少ないため核異型と肺の汚染との因果関係については証明できなかった。

5) 走査電顕による元素分析

肺気管支周囲、血管周囲、肺胞周囲、胸膜、肺門部リンパ節の各部位における粒子状沈着物内の各種元素につき、これに含蓄率にして最小値（Min）（％）、最大量（Max）（％）、平均値（Av）（％）を見るといずれの症例においても、各組織部位に共通してSiが最も多く（Min 37.67, Max 87.5, Av 57.0）、続いてAl（Min 1.59, Max 14.53, Av 10.03）、P（Min 2.03, Max 13.23, Av 7.26）、Ca（Min 2.02, Max 7.86, Av 4.51）、S（Min 1.53, Max 5.88, Av 4.15）が共通して検出された。リンパ節においてはSiがより多く検出された。Tiが検出される症例が7例中5例あり、うち2例に強い胸膜肥厚が見られた（Fig.9）。SiおよびTiについて部位別に見ると、Siはリンパ節の数値に最も多く（63.86％）次いでその周辺部（58.90％）、胸
膜 (44.35%), 肺内 (35.57%) であったが、硅肺結節が存在する症例では同結節内の Si の含有量は他の組織部位より約 20% 多く検出された。Ti は胸膜で最も多く (2.83%), その他では 1.5% 以下であった。

肺癌例では、癌巣内、癌巣内外の発癌組織、胸膜およびリンパ節に分けて粒子状沈着物の分析を行なったが、癌巣内には粒子状沈着物はほとんど発見できず、発癌組織からは周囲の肺組織に比較して Si の高い傾向が見られた。Ti は 16 例の肺癌症例中 13 例で検出され (1.2〜12.6%), 胸膜をも含めた 5 例では 3 例において胸膜に最も多く検出された。癌の組織型別では、扁平上皮癌で Al が多く検出され (20.5〜25.2%, 他は 5〜10%), 小細胞癌では全例で組織全体から S が多く検出された (13〜23%, 他は 6〜15%). 他に測定した癌症例中 2 例で Cr が検出され、また、Cd, Ni がそれぞれ 1 例について検出された。

6) 原子吸光による分析
肺癌の各元素の濃度についての男女の比較では (Table 2)，男性において Fe, Ni, Pb および Cr が女性より有意に高い濃度を示した。年齢との相関では (Table 3)，正の相関関係がみられた元素は Fe, Cd および Cr であり，男性では特にこの傾向が強かった。負の相関関係がみられた元素は女性では Mg と Zn，男性では Zn であった。居住地域との関連についての検討では，10 歳以上の症例につき，死亡時の現住所で，埼玉県内の 7 地域（川越, 所沢, 熊谷, 稲敷, 越谷, 戸田, その他）に分けて検討した (Table 4)。例数および平均年齢に差があって比較は難しいが，地域別に大きな差は見られなかった。職業歴別の分析では，症例を事務職，肉体労働者，農業従事者に分類して比較したところ，有意の高値を示したものは肉体労働者における Fe, Cu および Cr，また農業従事者における Mg であった。喫煙歴との相関では，症例を非喫煙者，軽喫煙者（喫煙指数 500 未満），および重喫煙者（喫煙指数 500 以上）に分類して比較したところ，喫煙者で Mg が低値，Pb が高値となる傾向が見られるものの，明確な差とは言い難く，喫煙と肺内元素との関連を断定することは出来なかった。

考察
大気汚染が人の肺に及ぼす影響には，急性ある
Table 2. Concentration of 10 elements in the lungs of males and females.
(Atomic absorption analysis)

<table>
<thead>
<tr>
<th>Sex</th>
<th>Element</th>
<th>Fe</th>
<th>Cu</th>
<th>Ca</th>
<th>Mg</th>
<th>Zn</th>
<th>Cd</th>
<th>Ni</th>
<th>Co</th>
<th>Pb</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>MALE</td>
<td>mean</td>
<td>1298</td>
<td>12.4</td>
<td>2258</td>
<td>766.3</td>
<td>137.6</td>
<td>7.4</td>
<td>3.4</td>
<td>2.0</td>
<td>0.15</td>
<td>1.87</td>
</tr>
<tr>
<td>mean</td>
<td>1298</td>
<td>12.4</td>
<td>2258</td>
<td>766.3</td>
<td>137.6</td>
<td>7.4</td>
<td>3.4</td>
<td>2.0</td>
<td>0.15</td>
<td>1.87</td>
<td>5.31</td>
</tr>
<tr>
<td>FEMALE</td>
<td>mean</td>
<td>1013</td>
<td>11.4</td>
<td>2054</td>
<td>762.3</td>
<td>135.6</td>
<td>7.4</td>
<td>3.8</td>
<td>2.2</td>
<td>0.15</td>
<td>1.85</td>
</tr>
<tr>
<td>mean</td>
<td>1013</td>
<td>11.4</td>
<td>2054</td>
<td>762.3</td>
<td>135.6</td>
<td>7.4</td>
<td>3.8</td>
<td>2.2</td>
<td>0.15</td>
<td>1.85</td>
<td>3.29</td>
</tr>
<tr>
<td>Statistical significance</td>
<td>1%</td>
<td>5%</td>
<td>1%</td>
<td>1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Correlation between age and concentration of element in the lung.
(Atomic absorption analysis)

<table>
<thead>
<tr>
<th>Fe</th>
<th>Cu</th>
<th>Ca</th>
<th>Mg</th>
<th>Zn</th>
<th>Cd</th>
<th>Ni</th>
<th>Co</th>
<th>Pb</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>MALE</td>
<td>significant</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>level (n=200)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEMALE</td>
<td></td>
<td>1%</td>
<td>5%</td>
<td>5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>level (n=111)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>1%</td>
<td>5%</td>
<td>1%</td>
<td>1%</td>
<td>5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>level (n=311)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

いは慢性のもの、直接的あるいは間接的なもの、有機物のあるいは無機物的なもの、ガス状あるいは粒子状のものなど、さまざまな因子を考慮せねばならないが、今回、我々は、多数の人の肺組織が入手できる状況を多穿、大気汚染がその肺に残した粒子状沈着物と組織細胞異常の無機元素の分析という手段で検査し、 сигナルの肺組織の居住地、職業歴、喫煙歴のアンケート調査を行なった。大気汚染の肺に対する影響を検討することにした。

無機元素の分析法には、PIXE法、放射化分析法、プラズマ発光法などの優れた分析法があるが、これらは高額な器機を必要とする。本研究では、過去の研究に我々が使用して来た一般的な器機を用いることとし、1) 溶解した肺組織から分離した粒子状沈着物についての蛍光X線法による分析、2) 組織切片上の粒子状沈着物についての走査型電子顕微的X線微小分析法による分析、3) 溶解した肺組織についての原子吸光法による分析、の3種類の分析法を用いた。各分析法の長所を考慮した、高純度の原子吸光過程を検討するため、環境の影響を知るためには優れた方法であり、または元素の定量精度が高く、多種の元素の同時分析が可能なるなどの長所があるが、他方、高量の組織サンプルを必要とする短所がある。走査型電顕に装着したX線微小分析法は、肺の細気管支周囲、発症部、癌組織部、胸腺部などの組織構造を確認しつ
Table 4. Concentration of 10 elements in the lungs collected from each residential area. (age: >10) (Atomic absorption analysis)

<table>
<thead>
<tr>
<th></th>
<th>Fe</th>
<th>Cu</th>
<th>Ca</th>
<th>Mg</th>
<th>Zn</th>
<th>Cd</th>
<th>Ni</th>
<th>Co</th>
<th>Pb</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAMAKOE</td>
<td>mean</td>
<td>1301.0</td>
<td>12.45</td>
<td>1874.9</td>
<td>716.3</td>
<td>133.4</td>
<td>3.89</td>
<td>2.73</td>
<td>0.16</td>
<td>1.56</td>
</tr>
<tr>
<td>N=14.age:57.7</td>
<td>S.D.</td>
<td>980.8</td>
<td>4.29</td>
<td>592.9</td>
<td>259.7</td>
<td>48.8</td>
<td>2.36</td>
<td>5.99</td>
<td>0.16</td>
<td>1.34</td>
</tr>
<tr>
<td>TOKOROZAWA</td>
<td>mean</td>
<td>1334.7</td>
<td>13.62</td>
<td>3279.3</td>
<td>803.8</td>
<td>133.7</td>
<td>3.49</td>
<td>2.00</td>
<td>0.14</td>
<td>1.63</td>
</tr>
<tr>
<td>N=56.age:51.0</td>
<td>S.D.</td>
<td>1313.3</td>
<td>9.00</td>
<td>8640.7</td>
<td>550.9</td>
<td>45.5</td>
<td>2.29</td>
<td>2.15</td>
<td>0.14</td>
<td>1.29</td>
</tr>
<tr>
<td>KUMAGAYA</td>
<td>mean</td>
<td>1222.1</td>
<td>10.98</td>
<td>2108.0</td>
<td>836.3</td>
<td>141.0</td>
<td>2.99</td>
<td>1.33</td>
<td>0.15</td>
<td>1.52</td>
</tr>
<tr>
<td>N=33.age:42.1</td>
<td>S.D.</td>
<td>1624.2</td>
<td>3.52</td>
<td>1015.8</td>
<td>200.3</td>
<td>41.8</td>
<td>1.43</td>
<td>0.88</td>
<td>0.12</td>
<td>2.56</td>
</tr>
<tr>
<td>CHIBIBU</td>
<td>mean</td>
<td>984.3</td>
<td>11.42</td>
<td>2083.5</td>
<td>762.0</td>
<td>127.8</td>
<td>2.87</td>
<td>3.20</td>
<td>0.19</td>
<td>1.23</td>
</tr>
<tr>
<td>N=37.age:56.8</td>
<td>S.D.</td>
<td>543.6</td>
<td>5.34</td>
<td>1769.4</td>
<td>252.0</td>
<td>46.0</td>
<td>1.44</td>
<td>6.19</td>
<td>0.18</td>
<td>0.02</td>
</tr>
<tr>
<td>KOSHIGAYA</td>
<td>mean</td>
<td>1051.7</td>
<td>7.84</td>
<td>1857.2</td>
<td>729.9</td>
<td>123.5</td>
<td>3.41</td>
<td>2.31</td>
<td>0.15</td>
<td>2.33</td>
</tr>
<tr>
<td>N=8.age:44.3</td>
<td>S.D.</td>
<td>535.4</td>
<td>2.55</td>
<td>603.8</td>
<td>151.0</td>
<td>32.9</td>
<td>1.68</td>
<td>1.41</td>
<td>0.17</td>
<td>0.67</td>
</tr>
<tr>
<td>TOGA</td>
<td>mean</td>
<td>1113.8</td>
<td>12.29</td>
<td>1717.6</td>
<td>718.2</td>
<td>107.7</td>
<td>2.99</td>
<td>1.15</td>
<td>0.13</td>
<td>1.24</td>
</tr>
<tr>
<td>N=7.age:48.0</td>
<td>S.D.</td>
<td>410.3</td>
<td>5.41</td>
<td>224.8</td>
<td>155.7</td>
<td>35.6</td>
<td>0.89</td>
<td>0.40</td>
<td>0.09</td>
<td>0.81</td>
</tr>
<tr>
<td>OTHERS</td>
<td>mean</td>
<td>1061.3</td>
<td>10.86</td>
<td>1854.7</td>
<td>646.4</td>
<td>128.8</td>
<td>5.79</td>
<td>2.28</td>
<td>0.13</td>
<td>3.80</td>
</tr>
<tr>
<td>N=17.age:57.4</td>
<td>S.D.</td>
<td>729.0</td>
<td>4.21</td>
<td>861.6</td>
<td>287.8</td>
<td>64.2</td>
<td>9.49</td>
<td>2.29</td>
<td>0.10</td>
<td>7.72</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>statistical significance</th>
<th>♦</th>
<th>♦</th>
</tr>
</thead>
<tbody>
<tr>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
</tbody>
</table>

つ、目的の組織部分に沈着している粒子状喫吸物について元素分析ができ、また検体としては微量のパラフィン切片があればよいなどの点が長所であるが、定量は相対的である点と定量感度が低い点が短所である。原子吸光法は、元素の定量精度が高い長所を有するが、半面、測定に際して検体を溶液系にする必要があるため、溶媒には難溶の珪素の測定が困難であること、肺組織を溶剤してそのまま測定するために、外来性的粒子状沈着物のみならず、肺組織固有の内在性元素あるいは血液由来の元素まで測定すること、多数の元素の同時測定が出来ず、1種類の元素につき1ランクが必要である、などの短所を有する。

今回の研究では、肺から分離した粒子状喫吸物が大気より肺に移行して沈着したものであるゆえに、これについての蛍光X線法による分析結果が環境の相違に対応したデータを示し、本研究にかいても最も興味のある知見をもたらした。居住地別の検討では、New York で得た肺の粒子状喫吸物が重金属類が多くて最も工芸的な元素構成を示し、中国陜西省より得たものの方が、土壌の影響を最も強く示し、塩基症例では両者の中間ながら中国例に近く、東京症例ではやはり中間ながらNew York 例に近いデータを示した10)。肺癌症例の検討では、Kreyberg-1型、即ち扁平上皮癌と小細胞癌の群で Fe ならびに Cr、Mn および Ni などの発癌性のある重金属が有意義に高く検出されたが、このことはこれらの癌、すなわち、肺門部癌が肺末梢部癌より喫煙と深く関係する11)とともに、環境の影響をより強く受けで発生するという疫学調査の結果12)を裏付けるものである。喫煙歴と肺癌の相関では、男性の喫煙者は一定の相関をもつがデータが見いだされ、それはタバコ主流流の元素構成13)と一部一致して興味があった。しかし、
女性では喫煙者と非喫煙者との間に有意の差が見いだされなかった理由については、1）女性の喫煙者の数が少ないため統計上有意のデータが得られない、2）非喫煙者というところも配偶者が喫煙者の場合には間接喫煙を余儀なくされるが、などが考えられる。

走査電顕的による元素分析において、Ti が胸膜に最も多く検出され、また Ti と胸膜の肥厚と関連が示唆されるが、このような組織変化との関連で元素分析を行いないうことがこの方法の特徴である。Ti の生体に及ぼす作用については現在は未だ注目されていないが、この元素はプラスチック製品などに用いられて現代の生活の中に増加している元素であり、タバコの分析で Fe に次いで多く検出したとする報告もあるが、また酸化 Ti ファイバーを実験動物に吸入させ、アスピロ吸入と同様の胸膜肥厚や胸膜中皮膚発生をみた報告もあるので、今回も観察した Ti と胸膜肥厚の関連については今後も引き続き注目する必要がある。

強酸で溶かした肺組織の原子吸光法による元素分析では、職業に関連した所見を示したものので、その他の所見に乏しかったが、これは前述のごとく、粒子状沈着物以外の元素も測定するためと考えられた。

本研究の最大の興味は、肺が受ける汚染と肺発症の相関関係である。人の肺癌は肺部肺癌と末梢性肺癌と大別され、前者は扁平上皮癌と小細胞癌が多く、今回の粒子状沈着物の元素分析では、発症性のある Cr, Mn, Ni などの重金属元素が有意義に高く検出された。これらの元素の発生源は不明であるが、少なくともその一部には過去の何らかの職業性に暴露も疑われる。肺部の発生母地としては、肺部肺癌では気管支上皮の扁平上皮化生が、また末梢肺癌では肺胞や細気管支上皮の化生が考えられている。今回、組織学的検索で、気管支上皮の扁平上皮化生を検出した症例は、年齢とも炭粉症の程度とも相関せず、喫煙指数と正の相関を示したほか、粒子状沈着物中の元素の分析では Fe 濃度と相関したが、前記のごとく、Fe とタバコの主葉中で最も多い元素という報告もあるので、この喫煙と Fe に関する二つのデータは関連したものである可能性が高い。したがって、肺部肺癌の発生要因には、喫煙ならびに重金属元素の汚染が深く関与している可能性が高い。また、末梢型の肺胞あるいは細気管支上皮の化生を検出した症例は、喫煙指数および炭粉症程度と相関せず、年齢との相関を示した点は興味深い。その異型化に炭粉症程度と関連する傾向が認められなかったことは、末梢型肺癌の発生には環境因子の関与は少ないという疫学的調査の結果をここでも裏付けることになる。今回得られた結果から考えると重要な示唆は、1）肺部肺癌の発生との関連性が疑われる外的因子は、喫煙ならびに各種の工業活動に関連したCr, Mn, Ni などの重金属元素を含む汚染物質であるということ、2）末梢型肺癌の発生に関しては現在は加令性の要因しか浮かんでこないこと、3）喫煙や重金属に無関係の通常型の肺癌は、程度が進むと肺胞壁を鮮やかに肺気腫を発生させる点、などである。

結　語
埼玉および東京の病理解剖例および肺癌手術例、New York および中国西日本の肺癌手術例の総計 118 例のヒト肺につき、無機元素分析と病理組織学的検討を行った。

大気から肺に移行して沈着した粒子状沈着物についての波長分散型蛍光 X 線分析法による無機元素分析で、各無機元素の組成が居住地域や職業歴により変動しており、この粒子状沈着物が大気汚染の性状をよく反映していることが明らかとなった。

粒子状沈着物と肺組織の病理変化との関連では、粒子状沈着物の量が増えるに従って肺胞壁の断裂が起こり、これが肺気腫の発生と進行に関与することを見たが、肺部肺癌発生に関連する病変であるところの気管支上皮の化生とは相関せず、この化生性病変は、喫煙ならびに重金属元素による汚染に関連して発生していた。また、末梢性肺癌の発生に関連する肺末梢の化生性病変は粒子状沈着物による肺汚染とは相関せず、年齢に相関して発生していた。
謝辞

本研究を行なうに当たり、3年間にわたる絶大なご援助をいただきました財団法人日出科学振興財団の皆様、および蛍光X線装置による元素分析に関してご助言ならびにご協力をいただいた北里大学衛生学部衛生管理学科の今宮俊一郎教授ならびに教室員の方々、および今回の検索に用いた肺組織材料を快く提供して下さった New York 市 Mount Sinai 医科大学外科病理学の金子守教授、ならびに東京都立駒込病院病理学科の小池盛雄教授、ならびに中国山西省人民医院病理検査科の楊龍泉医長ならびに山西医学院病理学科教室の鍾永明教授に深く感謝いたします。

学会報告

1. 中村裕昭, 竹本和夫, 大島 晋, 外國京子, 宮下 雅子, 高潰保秀: ホタル肺のバリアフィン切片を用いた電子顕微鏡の元素分析, 第 19 回埼玉医科大学総会 (1983 年 11 月)
3. 大島 晋, 高潰保秀, 竹本和夫, 中村裕昭, 今宮俊一郎: 人肺の肺胞内沈着物についての波長分散 型蛍光 X 線装置による電子顕微鏡の元素分析, 第 78 回病理学会総会 (1984 年 4 月)
5. 大島 晋, 高潰保秀, 今宮俊一郎: 肺胞内沈着物の蛍 光 X 線装置による元素分析-肺癌例と非肺癌例の剖検例についての検討, 第 11 回埼玉医科大学総会 (1984 年 11 月)
6. 中村裕昭, 水谷英子, 大島 晋, 高潰保秀: ホタル肺胞癌例における肺胞内沈着物の電子顕微鏡的元素分析, 第 17 回日本外科学会総会 (1985 年 9 月)
7. 大島 晋, 高潰保秀: ホタル肺胞組織内肺胞内沈着物の元素分析-肺癌例及び非肺癌例についての検討, 第 26 回大気污染学会 (1985 年 11 月)
10. 外國京子, 清水桂彌, 宮下雅子, 高潰保秀: 気管支上皮と肺胞平上皮癌の核 DNA 掃定-パラフィン切片より分散した細胞についての定量顕微鏡的および flow cytometry の定量, 第 45 回日本癌学会総会 (1986 年 10 月)

発表論文

文献

1) 初鹿野 浩, 岩井和郎, 重松公昭, 岩崎裕郎, 吉村三郎, 岩月俊一, 岩野英男: 興き粉の分解, 分析を主とした肺胞粉症の病理, 医学のあゆみ, 64 (1), 594-603 (1968).
4) 外國京子, 清水桂彌, 宮下雅子, 高潰保秀: 支気管支上皮と肺胞平上皮癌の核 DNA 掃定-フラフィン切片より分散した細胞についての定量顕微鏡的および flow cytometry 的定量, 第 45 回日本癌学会総会記, 266 (1986).
6) 高潰保秀, 加賀谷 晃: Flow cytometry 利用の細胞診自動化のための one-step 染色法の開発.
7) 中村裕昭、高瀬薫: 病理標本パラフィン切片の
Energy dispersive X-ray 微小分析法. 埼玉医大
8) 中村裕昭、大島 晋、高瀬薫: ヒト肺内粒子状
沈着物のパラフィン切片を用いた電子顕微鏡的
9) 岩井和郎: 大気汚染要因としての二、三の粒子状
10) 大島 晋、高瀬薫: 肺に寄積した粒子状汚染
物質の元素分析-異なる4地域における肺癌症
例について. 医学のあゆみ. 140(3), 169-170
A Morphological and Biological Correlation.
12) L. T. Stayner and D. H. Wegman: Smoking,
Occupation and Histopathology of Lung
Cancer: A Case-Control Study with the Use
of the Third National Cancer Survey. JNCI, 70(3),
13) E. Wynder and D. Hoffman, Tobbaco and
Smoke: Studies in Experimental Carcinogen-
(1968).
14) Lee, K. P., Barras, C. E., Griffith, F. D. and
Waritz, R. S.: Pulmonary response and trans-
migration of inorganic fibers by inhalation