Studies on a method for monitoring four-dimensional multiphase air-pollution dynamics using a portable semi-conductor laser unit

An atmospheric-gas monitoring system was developed as well as its application technologies. Specifications posed on the measuring system were sensitivity, locality, in situ and real-time capabilities. The equipment should be small and light for a wide applicabilities.

A derivative absorption spectrometry with a tunable lead-salt diode laser and a short optical path in the open air were employed. Absorption spectra over a specific small spectral width in a mid-infrared region, instead of an absorption on a single absorption line, is involved. This allows a reliable operation to the measuring system. A sensitivity is decided by optical noises which take place as a result of unintended optical cavities formed in the optical system.

Special technologies to suppress optical noises were developed in order to attain high sensitivity even with a short optical path of one meter. A modification of laser-current modulation profile was effective for fine-pitched etalon fringes and a numerical data treatment based on a notion of adjoint spectrum can eliminate an interference from an foreign gas spectra.

An experimental system was build and atmospheric methane was measured for its density both in a laboratory and outdoors. A rapid change which could not be found with any conventional measuring instruments was measured. The sensitivity of the developed system was 0.3 ppm (rms) and a finite settling time of 12s was demonstrated. The system sizes 0.45×0.45×0.8 m³ and weighs about 30 kg.

— 107 —
発振波数はレーザ媒質の波数-利得曲線と屈折率-幾何学的形状で定まる絶モード条件で決まり、駆動電流を増加させる発振波長はある値まで連続的に変化し、それを超えると次の絶モード条件を満足するところへ跳躍（hop）する。発振波数は一定とは限らず、数次の絶あるいは横モードで同時に発振する場合もある。駆動電流に正弦波状の振幅変調を加えたとき、レーザの発振波数は波数変調（FM）を受けるが、Fig. 3は、その周波数特性を測定した結果の一例である。この場合、1次遅れモデルで近似した場合の振れ幅周波数は16 kHz、時定数にして9μsであった。これより高い周波数で駆動電流を制御すると、発振波数は振幅変調を受けるが周波数変化の幅は小さくなる。

（2）レーザ周波数分光法の開発（発表論文10, 11, 13）

白色光源を用い、分光器のスリットを制御させ、これに同期したロック・イン増幅器を使用する。周波数分光法は、大きく手ブロードな背景スペクトルに埋れた、小さいが穏やかな吸収線を強調して得られる方法として重用され、実験的にみたと、解析のための研究も行なわれている。分解能を上げ、この識別能力を高めるには、スリット幅を狭くしなければならないが、そうすると白色光源を用いたのでは利用できる光パワーが落ち、貴重な赤外光パワーを利用できなくなるので限界がある。

半導体レーザの出力光のスペクトル幅は6 MHz という報告もあれば極めて狭く、メタンガスの常温におけるドッパー広がりが約67 MHz、常温常圧における圧力広がりが0.1 cm⁻¹であるのに比べると完全な線スペクトルと考えても差しつかない。また、測定しても高い強度のスペクトルの大部分を利用することが可能である。また、理論の解析と実験結果との対応がつけやすい。

筆者らは、鉱酸半導体レーザを光源として周波数分光法を実現する電子回路を開発したとともに、有害なスペクトル雑音の影響を定量的に解析する手段としてd-空間の概念に到達した。

Fig. 4. An experimentally obtained instrumental function of a diode-laser second-derivative spectrometer. The laser-current modulation profiles are sinusoidal, triangular and repeated hyperbolic sinusoidal.

一般に分光装置を用いて得られる見かけのスペクトルS₉(ν)と真のスペクトルS(ν)との関係は装置関数H(ν)を用いて

$$S₉(ν)=\int \arctan H(ν-η)S(η)dη \quad (1)$$

と表される。Fig. 4は実際に、H(ν)を実験的に測定した例である。レーザのFM振幅は約0.04 cm⁻¹である。試料はメタンガスで常温、圧力は10 m Torrで吸収線の形状はドッパー・ドップリンに近く、半価幅はおよそ3×10⁻³ cm⁻¹であるため（1）におけるS(ν)は、デルタ関数と考えて差しきつかえない。したがって、得られた見掛けのスペクトルS₉(ν)が、すなわち装置関数である。

この場合、レーザ電流の変調波形によりこの装置関数の形状が変化する点が重要である。

d-空間とは定義が不明のものである。通常のスペクトルは、長さの逆数のディメンションを持つ波数の関数として表されるが、これのフーリエ変換は長さのディメンションを持つ長さ関数である。この空間において（1）式の右辺はH(ν, S(ν)のフーリエ変換の積で表され、その分光装置の妨害スペクトルに対する応答はH(ν)のフーリエ変換により定量的に表される。

（3）Lambert-Beerの法則と零点スペクトル（発表論文10, 13）

単色で平行なレーザ光束が、濃度cのガスを含む大気中を距離Lだけ進むとき、その前の透過率P₀およびPₓは、Lambert-Beerの法則により

$$Pₓ(ν)=P₀(ν)e^{(-cLα(ν))} \quad (2)$$

ただし、νはレーザ光の波数、τは絶対吸収率である。すなわち、

$$τ(ν)=cLα(ν) \quad (3)$$
で与えられる。$a(u)$ はこのガス種に固有のスペクトルである。分光装置で (3) 式の $\tau(u)$ を観測する場合には必ず雑音が入り

$$\tau(u) = cL \alpha(u) + \beta(u) + n$$

(4)

なる形のほうが適当である。$\beta(u)$ は干渉スペクトル、n はランダム雑音である。もし、$S(u)$ が正確にわかっているならば、

$$\int_{v_1}^{v_2} S^*(u) \beta(u) du = 0$$

(5)

なる性質を持つ別のスペクトル $S^*(u)$ により、v_1 から v_2 まで先分して得たスペクトル $\tau(u)$ に対して、

$$cL = \frac{\langle S^*, \tau \rangle}{\langle S^*, S \rangle}$$

(6)

なる計算から、計測しようとするガスの濃度・距離積 cL が求まる。ただし、記号 $\langle \rangle$ は式 (5) で定義される二つつのスペクトル間の内積を意味する。

もし、$\beta(u)$ があらかじめわかっている復数のスペクトルの線形結合であるならば、これらを正規直交化した $U_j, j = 1, \cdots, J$ を用いて

$$S^* = S - \sum_{j=1}^{J} \langle S, U_j \rangle U_j$$

(7)

により同じ効果が得られる。この S^* を随伴スペクトルと名付けた。

(4) 光学系の開発

開発した光学系の原理を Fig. 5 に示す。レーザを発した光はビーム・スプリッターにより分けられ、被測定ガスと参照ガスの両者のスペクトルが同時に得られる。参照ガスのスペクトルはそのまま(7) 式の S として用いられる。このような構成をとることにより、レーザ光の波数のゆらぎ、レーザ電流の変動の影響を極めて小さくすることができる。また、レーザ電流の変換も一方向である必要はなく、被測定ガスがランダムな変動を受けることも可能である。

(5) 電子回路

レーザ発振の駆動電流に対する応答は極めて早く、また、HgCdTe 光伝導型赤外検出器の応答は実測の結果、約 2 μs であった。この赤外検出器は、赤外光の入射による抵抗変化を利用することであるから、入射光のパワーヨルを知るためにはなんらかの方法でこれを一時的に遮断し、出力から暗電流や背景光による成分を差し引かねばならない。このシステムではレーザ駆動電流の 2 μs だけ遮断し、そのとき赤外検出器の出力にはパルスが現われ、その波形を入射光パワーヨルに比例することを利用している。

細分割光光法を実行するためには、赤外検出器出力は、ロッキング增幅器を用いて処理される。システムの制御と信号処理を、オンラインのマイクロプロセッサーで行なわせるために、位相検波回路の後を、サンプル・ホールドとクリア機能の付いた絶縁な積分器としている。一度データを計算機へ送出した後、この積分回路はただちにクリアされるので、高速な波長変換を行なっても得られ

![Fig. 5. A schematic diagram of the double beam absorption spectrometry system.](image)

![Fig. 6. A schematic block-diagram of the electronic signal processor.](image)
Fig. 7. Laser current program.

赤外線検出器の出力は前置増幅器を経た後、ロック・イン増幅器と波高検出回路に分けられる。(Fig. 6)

レーザー電流の制御プログラムを Fig. 7 に示す。レーザー電流は、基本的には直流値 I_d と周波数 f, 振幅 a の周期波形 i_m の和である。I_d はレーザー波数の中心値を定め、i_m は導関数分光法のためのものである。

直流値 I_d は商用電源に同期した 1/60 s の幅を持つ振幅と変形し、スペクトルを強引に合なう。レーザー電流は各段の最後に 2 μs だけ遮断される。

(6) 雑音特性 (発表論文 11, 13, 14)

雑音の種類と大きさを知る、ガス密度測定の限界を知るための測定を行なった。Fig. 8 がその結果である。4 本の曲線は、それぞれ次の状態での結果である。(1) 赤外線検出器を、これら内頸抵抗を持つ金属抵抗器で置き換えた。この結果は電子装置の雑音を示す。(2) 赤外線検出器に接続したがレーザーを動作させなかった。(3) レーザーに直流電流 I_d を加えず変調をかけた。これらの結果は、赤外線検出器の内部雑音の大きさを表し、レーザー光の強度によってのやや差はこれに比べて小さいことを示す。曲線 (4) はレーザー電流に変調をかけた場合で、上の三つと比べると若干大きいドリフトを示している。これは、レーザー波数が変調を受けたために、レーザーから赤外線検出器までの光路の光透過率がスペクトルの細い変動が彼方に現れたものである。これを光路従道と呼ぶことになる。

曲線 (4) に相当する信号の自己相関関数を計算したものが Fig. 9 である。これからわかるように光路雑音は白色ガウス雑音とは明らかに異なる動特性を持ち、長い時間、積分平均化してもゆらぎの大きさは抑制されない。また、周期的時間変化も認められる。

本システムではレーザーから赤外線検出器に至る光路上に多数の光学素子が配置されている。す
Fig. 10. An etalon-fringe superimposed on a methane spectrum. The fringe comes from a cavity between the laser and the first collimating lens.

Fig. 11. A fine pitched etalon fringe which arises between the laser and the ir-detector. A Doppler-limited line profile of methane is associated.

Fig. 12. A temporal trace of a selected mode of the etalon fringe.

Fig. 13. A conceptual relation between noises and the time for integration.

これらのEFは数多くのモードから成り、一つ一つのモードについては振幅はあまり変化せず、位相のみがゆっくりと変化するような動きをする。実際のEFを1.7秒ごとにとり、それをフーリエ変換し、特定のモードのみを取り出してその振幅と位相を時間の順にプロットしたものがFig 12である。この変化は、レーダを支持するデューブリンの中での温度変動が凍結して波面が下り、中子が発散してレーダが移動すると仮定した計算値と一致する。

以上で述べたように、ランダム雑音を時間T だけ積分すると√T に反比例して圧縮されるが、
光路雑音は全く抑圧されない。この関係を示すものが Fig. 13 で、これからの二つの直線の交点がこのシステムの最適動作時を与える。実測値を当てはめるとこれは約 4.7 ms であった。(7) レーザ電流波形の制御によるエタロンフリングの抑圧（発表論文 15, 17）

先に (2) で、レーザ電流の変調波形を変えることにより、装置関数の形が変わることを示した。この事実は解析的にも説明がつく。Fig. 14 は正弦波と二曲線正弦波の変調を行う場合について、装置関数を計算したものである。Fig. 15 はこれらの変調波形を用い、Fig. 11 に示すものと同じエタロンフリング (EF) が抑圧される様子を示す。図中には、参考のために大気圧のメタンガスの 1 本の吸収線が重ねてある。この効果は、EF のピッチが変調振幅よりも小さいほど著しい。

Fig. 16 は 3 種類の変調波形について、変調振幅を広げると EF の見掛けの振幅が減少してゆき、その逆は正弦波形よりも二曲線正弦波形を用いるときの方が急激であることを示している。

従来、導関数分光法が効果的であることがの説明は、例を述べるのみで統一的な理論展開がなさ

![Fig. 16. Change of etalon-fringe suppression as a function of modulation amplitude.](image)

![Fig. 17. A conceptual response of the system and noise spectra in d-space.](image)
れたことはなく、極めて難解であった。これに対し、(2)で説明した倒空の概念を用いると、明るような説明が可能になる。Fig. 17(a)は倒空に関する測定システムの応答を示し、これは基盤のフーリエ変換に他ならない。①は無限に細いスリットを持ち、通常の分光器の応答である。

導関数分光法を用いることにより、倒空があるいは、なるべきな形をもつスペクトルに対しては感度を持たない(2)。また、極めて高倒空の、あるいは極端に細く変化するスペクトルに対しては一種の平均化作用を有し、感度が下る(3)。この傾向は変調波形を正弦波から、三角波(3)、そして双曲線正弦波(6)と変更するにつれ、いっそう強まる。関連スペクトルの概念に基づく数値データ処理により、低倒空の干渉スペクトルを詳細する能力はいっそう高められる(3)。干渉スペクトルとして考えられるのは、(b)に示すようなEF(7)と平坦なスペクトル形状を持つ窓の汚れなど(9)である。EFは周期形状を有するから倒空空間では線スペクトルとなり、その倒空はキャビティを構成する2枚の反射面間の距離に正確に一致する。干渉スペクトル(7)と(9)の間に十分な間隔が存在し、そこで対象気体のスペクトル(8)が十分に振幅を有する時に、上記の干渉スペクトル検出技術が効果を発揮する。

(8)可搬計測システム(M6システム)の開発

野外での大気ガスの、その場計測を可能にするために、可搬計測システムを製作した。Fig. 18はそのブロック図、Fig. 19は光学系の写真である。このシステムの特徴は、小型・軽量化を計るために、コーナー・キューブ(C.C.)鏡系を採用したことである。C.C.鏡系は小さな基板上に設置され、他の光学素子は別基板上に設置されている。二つの基板の間に簡単な枠を用いて支えられている。C.C.鏡系は、平行光束が入射するとき、常にこれと平行な光束を反射する性質がある。この性質を利用すると、主軸位置の変動が必要でない。したがって、軽い光学系を作ることが可能で、光束を折り返すことにより小型になる。

このシステムの外形寸法は、0.45m x 0.45m x 0.8m、重量約30kgである。光路長は1.25mである。

2. 大気中メタンガス濃度の測定
2.1 室内実験

M6システムについて、その性能を調査するための各種の実験を行った。Fig. 20は、高濃度の測定を行い安定性を確認したもののである。試料ガスは968ppmの較正用ガスを長さ20cmのセルにつめたものを用いた。この場合、レーザはマルチモード発振を用いたのでレザビ
Fig. 19. The optical head.

Fig. 20. Temporal trace of methane density. The correlational method shows a better performance than the lock-on method. A multimodal laser is employed.

Fig. 21. A temporal trace of methane density with a mono-modal laser.

Fig. 20 に見られる大きな変動はなくなった。このレーザのマルチモード動作による測定値の変動は、真の濃度に対する係数の変化という形で現れ、低濃度ガスを測定する場合にはあまり問題にならなくなる。

本システムは1スベクトルを256点のデータで表し、1データは1/60s ごとに得られる。したがって1スベクトル検は4.2s で終了し、残りの2s 内にマイクロプロセッサで濃度計算が行なわれる。したがって、ガス濃度がステップ状に変
化した場合でも1箇所とばせて次の結果は正しい値を示し、盤定時間は12.4sということになる。
Fig. 22は、実験結果を示す。光路中にガスセルを置き、小型ポンプで内部の空気が循環するようにしておく。ときどき、注射針で純粋メタンを微量ずつ、素早く注入してこの実験を行なった。
Fig. 23は実験室内での大気中のメタンガス濃度を計測した例である。平均値0.7 ppm、ゆらぎは1.7 ppm (P-P), 0.3 ppm (rms)の結果が得られている。Fig. 24は、マルチモードレーザを用いた例である。大気のゆらぎの影響を避けるため、最初はポリエチレン膜で光学ヘッドを密封し、途中からそれを取り払った。それまでの測定値のゆらぎは、レーザのマルチモード動作と、エタロフランジの影響によるものと思われる。ポリエチレン膜を取り去った後に現れた速い変動は、実験室大気中のメタンガス濃度の変化を示している。

2.2 屋外実験
M6システムは、光学ヘッド、電子信号処理システム、マイクロプロセッサ、電源部が別になっており、その間はケーブルで接続されている。これを大学構内の芝生上に置いて測定を行なった。測定値は激しく変動しており、ときどき負の方向へ振れていた。測定の終わりに光学ヘッドをポリエチレン膜で密封した結果も大きく動いていることから、これはレーザのマルチモード動作のためと思われる。

この例にみられる極めて速い大気中のメタンガス濃度のゆらぎは、従来の計測装置ではとても追従できない速さを示している。

3. 研究成果のまとめ
大気中の希薄ガス濃度を、高感度、実時間、局所的に非接触的に計測する装置を開発した。特にメタンガスを対象として各種の計測を行う、実験的に0.3 ppm (rms)の精度を持ち、これはエタロフランジによって決定される。レーザとしてはシングルモードレーザが必要であることを知った。また、大気中メタンガスの濃度は、従来のガス計測装置では到底追従できないほど速く変動していることもわかった。

試作したシステムの光学ヘッドの大きさは、0.45×0.45×0.8m³で、重量約30kgであった。他の部分の大きさ、重量ともにこれらの大きさは、さらに小型・軽量化が可能である。

4. 今後の課題
最初の可搬モデルとしてM6システムを試作したが、応用性を拡大するためにはいったん、小型・軽量化し、かつ、エタロフランジを抑圧して高感度化しなければならない。このためには、光学系に、軸外し凹面鏡、ランダムパターン・ビ
ホームスプリッタを採用し、全体を再設計する必要がある。
さらに小量化し、NO, NO2などの微量成分の測定を可能にするために、レーザーをパルス動作させる必要があり、電子回路の方針からの開発が望まれる。

なおこれらの機器開発と並行し、それぞれの段階に応じた方法で、本研究の最終目標とする大気污染の変化状態の発見の状況の追跡を行ない、大気汚染対策のための基本的データの収集が可能であり、時宜に応じた社会科学的成果が得ることができると思われる。

文献
2) 筍原（富士通信社）の測定による。
6) 吉永 弘 (福) : 応用光科学ハンドブック、朝倉書店 (1973) p. 543.
7) 同上、p. 980.

発表論文
9) 永瀬，古賀，棚田，佐野：半導体レーザー接合部温度測定法，J63-C, [5], 317-318 (1980).
口頭発表

1) 古賀, 永瀬, 小坂, 佐野: 可同調半導体レーザ (TDL) によるリアルタイムスペクトロスコピー、 昭和 55 年電気 4 学会中国支部連合大会, 32104 (1980 年 11 月).

3) 永瀬, 古賀, 小坂, 佐野: 半導体レーザーの光定在波音現象、 電子通信学会技術研究報告, OQE 80-121 (1981 年 1 月).

4) 古賀, 永瀬, 小坂, 佐野: 可同調半導体レーザ (TDL) を用いたガス計測システムとその実測例、 電子通信学会技術研究報告, OQE 80-122 (1981 年 1 月).

5) 古賀, 永瀬, 小坂, 佐野: 半導体レーザーによる大気中のマグネシウムの検出、 第 7 回レーザー・レーザーシンポジウム, pp. 75-76. (1981年 2月).

7) 古賀, 永瀬, 小坂, 佐野: レーザー・ダイオードによる分光計測における光定在波音現象、 昭和 56 年度電気学会総合全国大会, 922 (1981年 3月).

8) 佐野, 古賀, 小坂, 綱原: 半導体レーザーによる面接近度ガス短時間計測へのアプローチ、 電子通信学会技術研究報告, OQE 81-49 (1981年 7月).

13) 佐野, 古賀, 小坂, 綱原: 7 μm 帯鉛塩半導体レーザーを用いる大気ガス分析装置の開発、 昭和 57 年度電気通信学会総合全国大会, 914 (1982年 3月).