Development of novel bioassay system for evaluation of environmental toxic materials
using C. elegans

Toshihiko Eki, Ph.D.
Associate Professor, Department of Ecological Engineering, Toyohashi University of Technology

I studied on a novel assay system for detecting toxicity of reagents using nematode C. elegans. The nematode is a representative multicellular organism like human, and we can easily measure a lifespan of nematode to allow us to study experimentally any factors affecting a lifespan of organism. In this study, I tried to establish a novel assay system based on monitoring influence of toxic materials in nematode lifespan and development, which can be replaced to current live-or-death-based toxicity tests. The lifespan of nematodes cultured with heavy metals (copper, cadmium), or detergent was significantly reduced and development of lava was inhibited in a concentration dependent manner, suggesting that this system may be applied for detection of contaminated heavy metals and detergents. On the other hand,
reduction of lifespan of nematode treated by alkylating reagent (i.e., mutagen) was not so significant. Thus, I am applying the feeding RNA interference (RNAi) technology to reduce DNA repair activity, which could make the nematode more sensitive to DNA damages and the system more sensitive and specific to mutagen.

【研究目的】
環境汚染を防止するための重要な予防的手段の一つとして、効率的な化合物の有害性評価法の導入が期待されている。また産業界においては欧州を中心に製品に用いられる化学物質の有害性を厳密に問う機運が高まっている。物質の有害性評価には、これまでバクテリアやミジンコなど水棲生物の生死を基準とした評価法が適用され、そこから導かれた数値LD50（50%致死量）などが有害性の指標として利用されてきた。しかしながらこのような急性毒性による生死判定試験のみでは、現在、社会的に懸念されている複合的で長期（年単位）に渡る生物影響を本当に評価できているか疑問が残る。そのためにはマウスなどを用いた評価試験が考えられるが、年単位の時間と多大なコストが必要であり、テストできる化合物の数は限定される。また動物愛護の観点からも問題がある。そこで本研究では寿命の測定が容易で遺伝子操作も可能な多細胞生物である線虫C. elegansを材料に選び、その個体寿命に及ぼす影響（寿命の短縮）を新たな指標とする有害性評価法の開発を目指した。

【研究経過】
産卵期にある線虫（野生型 Bristol N2 株）をアルカリ・ブリーチ法により同調した線虫の幼虫集団を得た。線虫の培養はNGM寒天培地を含む6cm径のディシリュをパラフィンで封じて使用した。2xYT培地で培養した大腸菌OP50株を遠心で濃縮し、培地の中心付近に円状に滴下したものを線虫の餌として与え、20度で無菌的に飼育を行った。試薬を添加する場合は、寒天培地に終濃度になるようあらかじめ加えた。有害試薬の濃度が高いと飼育中の線虫がディシリュ外に逃げてしまおうため、餌の周囲を結晶化したパルミチン酸で囲むことで線虫の逃亡を抑制した。なおパルミチン酸による線虫寿命への影響はないことは確認済みである。寿命測定のための飼育には大腸菌を塗布し、25μM5-fluoro-2’-deoxyuridine (FUDR)を添加したNGM培地を使用した。FUDRは線虫の産卵を抑制し、寿命測定の妨害となる子孫線虫の混入を抑えるために使用した（FUDRによる寿命への影響はない）。飼育中の集団について、継時的（一日おき）に実体顕微鏡により観察するこで各線虫個体の生死を判定し、線虫集団の生存曲線を描くことで行った。各濃度グループあたり30匹から70匹の線虫
を用いた（ディッシュあたり約 10 匹）。生死は運動性の喪失により判断したが、形態的にも容易に判別可能である（死ぬと透明になる）。

発生への影響評価については以下的手順で行った。すなわち、産卵期に入った線虫を 24 時間、各濃度の試薬と大腸菌を含む NGM 寒天培地にて飼育後、新しい寒天培地に移して 8 時間飼育し、受精卵を産卵させた。その後、受精卵から発生した子孫線虫群の体長を経時的に測定することで、線虫の発生・成長のモニターニーを行った。本研究では、環境汚染および生物学的影響の観点から重要と考えられる重金属類、界面活性剤および変異原性物質をテスト物質として評価を行った。重金属として銅とカドミウムを、界面活性剤として市販の洗剤、また変異原性物質として代表的なアルキル化剤である methyl methanesulfonate (MMS) を用いた。

図2 銅イオンによる発生への影響評価
銅イオン（硫酸銅）による線虫の寿命短縮および成長阻害が 0.1mM 以上の濃度域で観察された（図 1, 2）。阻害の程度は濃度依存的であり、二種類のアッセイ系においてパラレルであることが判明した。データは示さないが、カドミウムにおいても同様の結果を得た。また主要な水環境汚染の原因である洗剤でも同様の顕著な寿命短縮効果が認められた（図 3）。

図3 洗剤による寿命への影響評価
一方、アルキル化剤 (MMS) による寿命短縮効果は 0.1%(w/v) 以上の濃度域で認められた（図 4）。低中濃度域においては、成長阻害効果を含め殆ど影響は認められなかった。

図1 銅イオンによる寿命への影響評価

図2 銅イオンによる発生への影響評価

図3 洗剤による寿命への影響評価
図4 アルキル化剤による寿命への影響評価
現在、変異原性物質の検出感度を向上させる目的で、RNAi法を用いた本アッセイ系の改良を進めている。RNAi法によりDNA修復遺伝子機能を抑制することで、変異性物質に対する感受性や特異性を高めることが期待できる。継続的に給餌（feeding）を介して線虫のRNAiを誘導できるfeeding RNAi法を適用することで、長期間にわたり遺伝子機能抑制状態を達成できると考えられた。そこで寿命支配遺伝子であるdaf−16遺伝子とdaf−2遺伝子に対するfeeding RNAi処理線虫の寿命測定実験を行った結果、各々寿命が半分に短縮あるいは1.3倍に延長したことから、本実験系により期待通りの遺伝子機能抑制効果を達成できことがあることが実証された。現在、DNA修復遺伝子群の機能抑制線虫を用いて寿命測定実験を進めている。本研究では、寿命測定実験とは別の原理に基づく評価法として、ストレス応答プロモータの支配下にあるGFP発現線虫を用いた有害性評価法の検討も並行して行った。しかし、期待通りのストレス（熱ショックなど）による発現誘導は検出されたが、応答の特異性は低く、プロモータの種類の検討などが必要と考えられた。

【研究成果】
線虫個体の寿命および発生・成長に与える影響を指標とした有害物質の評価法の検討を行った結果、本法が重金属や界面活性剤の有害性評価に適用できることが実証された。またfeeding RNAi法を併用することで、本系で比較的検出の困難な有害物質に対しても検出感度と特異性を向上できる可能性が示された。

【今後の課題と発展】
（1）本系を様々な有害物質（農薬、有機溶剤、排ガス成分など）に適用できるか、あるいは複合的な有害性の評価に適用可能か検討すること、（2）RNAi法と組み合わせた実験系の感度と特異性の向上を進めること、以上の二点が今後の課題である。

【発表論文リスト】
（国内学会発表）
1. 中村正晴, 大懸俊康, 安藤篤美, 和田選, 林理恵, 花岡文雄, 浴俊彦「線虫のゲノム安定化に関与する新規ヘリカーゼ様遺伝子の機能解析」日本分子生物学協会第27回年会（神戸）2004年12月
2. 原田浩明, 林理恵, 川中康平, 浴俊彦「ゲノム傷害による線虫の個体寿命に関与する研究」日本薬学会第125回年会（東京）2005年3月